III teema

Seotud dokumendid
XV kursus

IMO 2000 Eesti võistkonna valikvõistlus Tartus, aprillil a. Ülesannete lahendused Esimene päev 1. Olgu vaadeldavad arvud a 1, a 2, a 3,

8.klass 4 tundi nädalas, kokku 140 tundi Hulkliikmed ( 45 tundi) Õppesisu Hulkliige. Hulkliikmete liitmine ja lahutamine ning korrutamine ja jagamine

vv05lah.dvi

lvk04lah.dvi

6. KLASSI MATEMAATIKA E-TASEMETÖÖ ERISTUSKIRI Alus: haridus- ja teadusministri määrus nr 54, vastu võetud 15. detsembril E-TASEMETÖÖ EESMÄRK Tas

Treeningvõistlus Balti tee 2014 võistkonnale Tartus, 4. novembril 2014 Vastused ja lahendused 1. Vastus: 15, 18, 45 ja kõik 0-ga lõppevad arvud. Olgu

Microsoft Word - 56ylesanded1415_lõppvoor

Eesti koolinoorte LIII matemaatikaolümpiaad 28. jaanuar 2006 Piirkonnavoor Hindamisjuhised Lp hindaja! 1. Juhime Teie tähelepanu sellele, et alljärgne

Microsoft Word - Lisa 3 PK matemaatika.docx

MATEMAATILINE ANALÜÜS I. ESIMESE KONTROLLTÖÖ NÄITEÜLESANDED (1) Leida funktsiooni y = sin x + ln(16 x 2 ) määramispiirkond. (2) Leida funktsiooni y =

Matemaatilised meetodid loodusteadustes. I Kontrolltöö I järeltöö I variant 1. On antud neli vektorit: a = (2; 1; 0), b = ( 2; 1; 2), c = (1; 0; 2), d

Matemaatika ainekava 8.klass 4 tundi nädalas, kokku 140 tundi Kuu Õpitulemus Õppesisu Algebra (65 t.) Geomeetria (60 t.) Ajavaru kordamiseks (15 õppet

Word Pro - digiTUNDkaug.lwp

TALLINNA PAE GÜMNAASIUMI AINEKAVAD GÜMNAASIUM AINEVALDKOND: MATEMAATIKA

KITSAS JA LAI MATEMAATIKA Matemaatikapädevus Matemaatikapädevus tähendab matemaatiliste mõistete ja seoste süsteemset tundmist, samuti suutlikkust kas

Matemaatiline analüüs IV 1 3. Mitme muutuja funktsioonide diferentseerimine 1. Mitme muutuja funktsiooni osatuletised Üleminekul ühe muutuja funktsioo

(10. kl. I kursus, Teisendamine, kiirusega, kesk.kiirusega \374lesanded)

Sügis 2018 Kõrgema matemaatika 2. kontrolltöö tagasiside Üle 20 punkti kogus tervelt viis üliõpilast: Robert Johannes Sarap, Enely Ernits, August Luur

Matemaatiline analüüs III 1 4. Diferentseeruvad funktsioonid 1. Diferentseeruvus antud punktis. Olgu funktsiooni f : D R määramispiirkond D R selles p

ma1p1.dvi

efo03v2pkl.dvi

Microsoft Word - Sobitusahelate_projekteerimine.doc

prakt8.dvi

12. Marek Kolk, Kõrgem matemaatika, Tartu Ülikool, Algfunktsioon ja määramata integraal Sisukord 12 Algfunktsioon ja määramata integraal 1

Polünoomi juured Juure definitsioon ja Bézout teoreem Vaadelgem polünoomi kus K on mingi korpus. f = a 0 x n + a 1 x n a n 1 x

Neurovõrgud. Praktikum aprill a. 1 Stohhastilised võrgud Selles praktikumis vaatleme põhilisi stohhastilisi võrke ning nende rakendust k

elastsus_opetus_2005_14.dvi

Tala dimensioonimine vildakpaindel

Kontrollijate kommentaarid a. piirkondliku matemaatikaolümpiaadi tööde kohta 7. klass (Elts Abel, Mart Abel) Test Ül. 6: Mitmes töös oli π aseme

Ruutvormid Denitsioon 1. P n Ütleme, et avaldis i;j=1 a ijx i x j ; kus a ij = a ji ; a ij 2 K ja K on korpus, on ruutvorm üle korpuse K muutujate x 1

Word Pro - diskmatTUND.lwp

(geomeetria3_0000.eps)

(Microsoft Word - T\366\366leht m\365isaprogramm 4-6 kl tr\374kkimiseks.doc)

Kontrollijate kommentaarid a. matemaatikaolümpiaadi piirkonnavooru tööde kohta Kokkuvõtteks Ka tänavu püüdsime klasside esimesed 2 ülesa

loogikaYL_netis_2018_NAIDISED.indd

efo09v2pke.dvi

6

Võistlusülesanne Vastutuulelaev Finaal

raamat5_2013.pdf

QUANTUM SPIN-OFF - Experiment UNIVERSITEIT ANTWERPEN

KM 1 Ülesannete kogu, 2018, s

Pimeda ajal sõitmine

Lisa I_Müra modelleerimine

Euroopa Liidu Nõukogu Brüssel, 24. september 2015 (OR. en) 12353/15 ADD 2 ENV 586 ENT 199 MI 583 SAATEMÄRKUSED Saatja: Kättesaamise kuupäev: Saaja: Eu

Andmed arvuti mälus Bitid ja baidid

EELNÕU

Sissejuhatus mehhatroonikasse MHK0120

Eesti koolinoorte 66. füüsikaolümpiaad 06. aprill a. Vabariiklik voor. Gümnaasiumi ülesannete lahendused 1. (AUTOD) (6 p.) Kuna autod jäävad sei

Praks 1

DIGITAALTEHNIKA DIGITAALTEHNIKA Arvusüsteemid Kümnendsüsteem Kahendsüsteem Kaheksandsüsteem Kuueteistkü

Antennide vastastikune takistus

NR-2.CDR

AINE NIMETUS: MATEMAATIKA AINEKAVA I-III KOOLIASMTES ÜLDOSA Põhikooli riiklik õppekava: Õppe- ja kasvatuseesmärgid Õppeaine kirjeldus Kooliastmete õpi

VL1_praks6_2010k

normaali

Praks 1

Microsoft Word - VG loodus

Praks 1

Remote Desktop Redirected Printer Doc

Programmi Pattern kasutusjuhend

loeng7.key

Anneli Areng Kaja Pastarus Matemaatika tööraamat 5. klassile II osa

6

(Microsoft Word - T\366\366leht m\365isaprogramm algklassilastele tr\374kk 2.doc)

Microsoft Word - QOS_2008_Tallinn_OK.doc

EESTI MEISTRIVÕISTLUSED PONIDE TAKISTUSSÕIDUS 2005

10 PEATUMINE, PARKIMINE, HÄDAPEATUMINE Lk Sõiduki peatamine ja parkimine. (7) Asulavälisel teel tuleb sõiduk peatada või parkida parempoolse

01_loomade tundmaõppimine

Image segmentation

Automaatjuhtimise alused Automaatjuhtimissüsteemi kirjeldamine Loeng 2

pkm_2010_ptk6_ko_ja_kontravariantsus.dvi

Raili Veelmaa Eve Värv Ivi Madison Meelika Maila Matemaatika tööraamat 6. klassile I osa

HCB_hinnakiri2017_kodukale

7 KODEERIMISTEOORIA 7.1 Sissejuhatus Me vaatleme teadete edastamist läbi kanali, mis sisaldab müra ja võib seetõttu moonutada lähteteadet. Lähteteade

Väljaandja: Keskkonnaminister Akti liik: määrus Teksti liik: terviktekst Redaktsiooni jõustumise kp: Redaktsiooni kehtivuse lõpp:

HCB_hinnakiri2018_kodukale

Mida räägivad logid programmeerimisülesande lahendamise kohta? Heidi Meier

Mining Meaningful Patterns

Microsoft Word - Toetuste veebikaardi juhend

Eesti kõrgusmudel

Pythoni Turtle moodul ja Scratchi värvilisem pool Plaan Isikukoodi kontrollnumbri leidmine vaatame üle lahenduse kontrollnumbri leimiseks. Pythoni joo

Microsoft PowerPoint - loeng2.pptx

Microsoft Word - A-mf-7_Pidev_vorr.doc

19. Marek Kolk, Kõrgem matemaatika, Tartu Ülikool, Arvridade koonduvustunnused Sisukord 19 Arvridade koonduvustunnused Vahelduvat

Tartu Kutsehariduskeskus Teksti sisestamine Suurem osa andmetest saab sisestatud klaviatuuril leiduvate sümbolite abil - tähed, numbrid, kirjavahemärg

PowerPointi esitlus

TARTU ORIENTEERUMIS- NELJAPÄEVAKUD neljapäevak Tehvandi, 1. august Ajakava: Start avatud: Finiš suletakse: Asukoht: Võistlu

elastsus_opetus_2015_ptk5.dvi

Word Pro - digiTUNDkaug.lwp

Relatsiooniline andmebaaside teooria II. 6. Loeng

PAIGALDUSJUHEND DUŠINURK VESTA 1. Enne paigaldustööde alustamist veenduge, et elektrikaablid, veetorud vms ei jääks kruviaukude alla! 2. Puhastage sei

10/12/2018 Riigieksamite statistika 2017 Riigieksamite statistika 2017 Selgitused N - eksaminandide arv; Keskmine - tulemuste aritmeetiline keskmine (

Programmeerimiskeel APL Raivo Laanemets 17. mai a.

KINNITATUD Tallinna Linnavalitsuse 7. novembri 2001 määrusega nr 118 TALLINNA TÄNAVATE JOOKSVA REMONDI JA LINNA PUHASTAMISE NORMATIIVID 1. Üldsätted 1

SPORTident Air+

Infix Operaatorid I Infix operaatorid (näiteks +) ja tüübid (näiteks ->) kirjutatakse argumentide vahele, mitte argumentide ette. Näiteks: 5 + 2, 2*pi

ELUPUU Eestikeelne nimi Harilik elupuu, levinud ka hiigelelupuu Ladinakeelne nimi Thuja occidentalis ja thuja plicata Rahvapärased nimed Ilmapuu, tule

Väljavõte:

KORDAMINE RIIGIEKSAMIKS IV TRIGONOMEETRIA ) põhiseosed sin α + cos α = sin tanα = cos cos cotα = sin + tan = cos tanα cotα = ) trigonomeetriliste funktsioonide täpsed väärtused α 5 6 9 sin α cos α tan α - ) täiendusnurga valemid sin(9 - α) = cos α cos(9 - α) = sin α tan(9 - α) = tan ) negatiivse nurga trigonomeetrilised funktsioonid sin(- α) = -sin α cos(- α) = cos α tan(- α) = -tan α 5) summa ja vahe trigonomeetrilised funktsioonid sin(α β) = sin α cos ± cos α sin cos(α β) = cos α cos sin α sin tan tan tan(α β) = tan tan 6) kahekordse nurga trigonomeetrilised funktsioonid sin α = sin cos cos α = cos² - sin² tan tan α = tan

7) seosed täisnurkses kolmnurgas B a) sin = c a sin = c b a C b c A b) cos = c b c) tan = b a cos = c a tan = a b 8) sin(α + n 6 ) = sin cos(α + n 6 ) = cos tan(α + n 6 ) = tan 9) + + - + - + - - - + + - sin cos tan ja cot a b c ) Siinusteoreem R sin sin sin ) Koosinusteoreem a b c b a a c c b bc cos accos abcos b C a a b c cos ab a c b cos ac b c a cos bc A c B

) Trigonomeetrilised funktsioonid Funktsioon y = sin Määramispiirkond X=R Muutumispiirkond Y= ; Paaritu funktsioon sin(- α) = -sin α Periood = 6 y,5,,5, -6 - - -8 - -6 6 8 6 -,5 y=sin -, -,5 Funktsioon y = cos Määramispiirkond X=R Muutumispiirkond Y= ; Paarisfunktsioon cos(- α) = cos α Periood = 6 y,5 y=cos,5-6 - - -8 - -6 6 8 6 -,5 - -,5 Funktsioon y = tan Määramispiirkond X=R/{(n+)/}, nz Muutumispiirkond Y=R Paaritu funktsioon tan(- α) = -tan α Periood = 8 5, y,,,,, -6-7 -8-9 -, 9 8 7 6 -, -, -, -5,

) Trigonomeetrilised põhivõrrandid ja nende lahendivalemid () sin = m = (-) n arcsin m + nπ, kus nz () cos = m = arccosm n, kus nz () tan = m = arctan m n, kus nz NB! sin ja cos korral tuleks kontrollida lahendeid n = ja n =, tan n = korral a) Võrrandi teisendamine algebraliseks võrrandiks Näide Lahendame võrrandi tan²- tan + = Teeme asenduse tan = u Saame võrrandi u² - u + = Viete i teoreemi põhjal saame lahendid u = ja u = Leiame nüüd tundmatu väärtused lahendades võrrandid tan = ja tan = tan = = arctan n = n, nz Kontrolliks leiame võrrandi erilahendi, kui n = : Vp tan² - tan + = - + = vp = pp Lahend: = n, nz b) Homogeensete trigonomeetriliste võrrandite lahendamine Homogeensed võrrandid esituvad kujul a sin bcos (või asin bsin cos ccos jne) Selliste võrrandite lahendamiseks jagame võrrandi mõlemad pooled koosinuse kõrgema astmega läbi Näide Lahendame võrrandi sin + cos = sin + cos = :cos tan + = tan = - : tan = -,5 = arctan(,5) n, nz Kontroll Leiame erilahendi, kui n = : arctan(,5) arctan(,5) 6 57 vp sin ( 6 57 ) + cos ( 6 57 ),96,89 vp = pp Lahend: = arctan(,5) n, nz c) Teguriteks lahutamise meetod Näide Lahendame võrrandi sin sin sin sin sin sin Korrutise nulliga võrdumise tingimusest saame: n ) sin = = arcsin n : = arcsin n = n, nz n ) sin sin : sin

= (-) n arcsin + nπ : n n, nz 9 Kontroll n =, nz Leiame erilahendid: n = = vp sin sin vp = pp n = = vp sin sin vp = pp n n, nz Leiame erilahendid 9 n = vp sin sin 9 9 9 vp pp n = vp sin sin 9 9 9 vp pp n n Lahendid on = ja n, nz 9 NÄITEÜLESANDED sin tan ) Tõesta samasus = tan cos sin Lahendus Teisendame esmalt vasaku poole murru lugeja: sin sin cos sin sin (cos ) sin cos cos cos Murru nimetajast saame: cos sin sin cos sin (cos ) sin Jagades lugeja ja nimetaja omavahel saame tan cos cos cos ) Lahenda võrrand sin = cos - sin Lahendus Lihtsustame esmalt võrrandi paremat poolt kasutades ruutude vahe valemit ning lõpuks kahekordse nurga koosinuse valemit cos - sin = cos sin cos sin = cos sin = = cos cos Saame nüüd võrrandi sin cos = cos sin cos cos = cos(sin ) = 5

Kasutades korrutise nulliga võrdumise tingimust saame kaks võrrandit () cos = () sin = Lahendame esimese võrrandi cos = = n, n Z Teisest võrrandist sin = sin = : sin =,5 n = n, n Z 6 Kontroll = n, n Z n = = vp sin =, p= cos sin = cos sin - n = = 5 5 = vp sin = sin = vp sin = sin n = n, n Z 6 = vp = pp 5 = ; p= 5 5 cos sin vp = pp = ; p= cos sin vp = pp n = = vp sin = sin =,866 ; 6 6 pp cos sin,875,5 =,866 vp = pp 5 5 n = = v= sin,866 ; 6 6 5 5 pp cos sin,5,875, 866 vp = pp Vastus Võrrandi lahenditeks on = n ja n = n, n Z 6 ) Riigieksam999 (5p) Leidke sin, kui sin rahuldab võrrandit cos = 7sin² ja Lahendus Teisendame võrrandi vasakut poolt kasutades kahekordse nurga koosinuse valemit cos = cos² - sin² = - sin² - sin² = -sin² Saime võrrandi -sin² = 7sin² - 9sin² = 9sin² = :9 sin² = sin Kuna, siis sin < sin = ja kuna 9 on III veerandi nurk,siis ka cos on negatiivne ning 6

cos = - sin 9 8 9 Leiame nüüd sin = sin cos = 9 Vastus sin 9 ) Riigieksam (p) Lahendage võrrand cos + sin =, kui ; Leidke parameetri a kõik väärtused, mille korral võrranditel cos + sin = ja cos a leiduvad ühised lahendid, kui ; Leidke funktsiooni y = cos periood ja skitseerige selle funktsiooni graafik, kui ; Skitseerige samale joonisele funktsiooni y = cos graafik Lahendus a) Lahendame võrrandi cos + sin = cos + sin = ( )² cos² + cos sin + sin² = Kuna sin² + cos² =, siis cos sin = sin = n = n, n Z = n, n Z Leiame lahendid lõigul ; Kui n = = cos + sin = + = ; n = = cos + sin = + = n = = cos + sin = - + = - võõrlahend n = = cos + sin = + (-) = - võõrlahend n = = cos + sin = + = n = - = - cos (- )+ sin(- ) = + (-) = - võõrlahend n = - = - cos(- ) + sin(- ) = - + = - võõrlahend n = - = - cos (- ) + sin( - ) = + = n = - =- cos (- ) + sin( - ) = + = Võrrandi cos + sin = lahendid, kui ; on ;,5 ;;,5 ; b) Leiame parameetri a kõik väärtused, mille korral võrranditel cos + sin = ja cos a leiduvad ühised lahendid, kui ; Selleks asendame võrrandis cos a -i väärtused eelmises punktis saadud tulemustega 7

a a a a a 5 cos cos cos cos cos cos c) Leiame funktsiooni y = cos perioodi Kui funktsiooni periood on T, siis funktsiooni y = sin k (y = cos k või y = tan k) perioodi leiame k T, kus Saame :,5 = = 7º k R Skitseerime funktsioonide y = cos ja y = cos graafikud Kasutame selleks ka eelmises punktis leitud väärtusi y cos,5,5-6 - - -8 - -6 -,5 6 8 6 y cos - -,5 5) (Riigieksam 5p) Vaatleme funktsioone f() = cos ja g() = cos a) Avaldage cos suurus cos kaudu b) Lõigul ; () lahendage võrrand f() = g() () joonestage ühes ja samas teljestikus funktsioonide f() ja g() graafikud Leidke joonise abil väärtused, mille korral f() > g() Lahendus a) Avaldame cos suurus cos kaudu Kasutame kahekordse nurga koosinuse valemit ning seost sin² + cos² = cos = cos² - sin² = cos² ( - sin²) = cos² 8

b) Lahendame võrrandi f() = g() ehk cos = cos Kasutame selleks eelmises punktis saadud tulemust cos² = cos cos² - cos = Lahendame saadud ruutvõrrandi cos suhtes D = (-) = 9 cos cos või cos Lahendame võrrandid cos = ja cos = -,5 cos = = n n, n Z cos = -,5 = n, n Z Leiame erilahendid lõigul ; () = n n, n Z n = = vp cos( )= ja pp cos = n = = vp cos ( )= ja pp cos = () = n, n Z n = = vp cos = -,5 ja pp cos = -,5 n = = 8 ei kuulu vaadeldavale lõigule 8 n = = vp cos = -,5 ja pp cos = -,5 Seega saime võrrandi cos = cos lahenditeks lõigul ; ; ; ; Joonestame samas teljestikus funktsioonide f() = cos ja g() = cos graafikud Funktsiooni f() = cos perioodiks on 6º : = 8º ja g() = cos perioodiks 6º y = cos,5 y = cos,5-6 9 5 8 7 6 9 -,5 - -,5 Leiame joonise abil väärtused, mille korral f() > g()selleks on vahemik o ; o ehk ; 9

sin 6) Riigieksam (p) On antud funktsioon f()=, ; sin a) Selgitage, kas funktsioon f() on määratud ka lõigul [;] b) Leidke vahemikus (;) () funktsiooni f() nullkohad; () vahemikud, kus funktsioon f() on positiivne ja kus see on negatiivne; () funktsiooni f() kasvamis- ja kahanemisvahemikud; () funktsiooni f() maksimumpunkt; c) Skitseerige funktsiooni f() graafik vahemikus (;) Lahendus a) Leiame funktsiooni väärtused lõigu otspunktides sin f()= ei ole määratud, kuna sin = ja murru nimetaja ei tohi olla null sin sin f()= ei ole määratud, kuna sin = ja murru nimetaja ei tohi olla null sin Seega on funktsioon määratud ainult vahemikus ; b) Leiame funktsiooni nullkohad sin sin sin : sin,5 sin sin Lahendivalemist saame n 8, n Z Leiame erilahendid vahemikust ; sin Kui n = = º kontroll: sin,5 sin 5 Kui n = = 5º kontroll: sin 5,5 n 5 Seega funktsiooni f() nullkohad vahemikus ; on ; 6 6 sin Positiivsuspiirkonna leidmiseks tuleb lahendada võrratus > ja sin sin negatiivuspiirkonna leidmiseks < Kasutades leitud nullkohti skitseerime sin märgikõvera f()< º f()> 5º f()<

Leiame jooniselt vahemikud, kus funktsioon f() on positiivne ja kus ta on negatiivne 5 5 X ; ja X ; ; 6 6 6 6 Kasvamis- ja kahanemisvahemike leidmiseks leiame funktsiooni tuletise cos sin cos sin cos f sin sin Kasvamisvahemiku leidmiseks lahendame võrratuse f () > Kahanemisvahemiku leidmiseks lahendame võrratuse f () < cos Kuna f avaldises murru nimetaja on alati positiivne, siis määrab sin võrratuse lahendid avaldis cos f ()> º 9º f ()< 8º Leiame jooniselt, et vahemikus ; kasvamis- ja kahanemisvahemikud vastavalt X ; ning X ; Kuna kohal = 9º läheb kasvamine üle kahanemiseks, siis on tegemist sin 9 maksimumkohaga ning leiame punkti ordinaadi y = sin 9 Funktsiooni f() maksimumpunkt Pma ; c) Skitseerime funktsiooni graafiku vahemikus ; Kasutame eelnevalt leitud nullkohti ja maksimumpunkti koordinaate ning leiame lisaks veel mõned funktsiooni väärtused f(5º) -,9; f(6º),8; f(º),8; f(65º) -,9

,5,5 - -,5 6 9 5 8 - -,5 - -,5 - f() 7) RE (p) On antud funktsioon f ( ) cos Lahendage lõigul [; π ] võrrand f ( ) 8 Võrrandi f () a = lahendite vahe lõigul [; π ] on Leidke arvutuste teel parameetri a väärtus Lahendus cos :,5 8 cos n, n Z Leiame erilahendid antud lõigul [; π ] 7 n ; n Loomulikult tuleb saadud lahendeid kontrollida Võrrandi cos a lahendamiseks teisendame võrrandi kujule cos a Ülesande andmetest on teada, et, kus > Vaatame olukorda funktsiooni graafiku abil Lahendite erinevusest saame : 6 Seega võrrandi lahendid peavad olema 7 5 a, 6 6 6 6 Saame, et

7 cos cos 6 6 5 cos cos 6 6 Järelikult a : a 7 Vastus Antud lõigul on lahendid ; Parameetri väärtus on a 8) RE 6 (p) Kolmnurkse maatüki ABC külg AB on 7 m ja külg AC on 7 m Nurk antud külgede vahel on Arvutage maatüki kolmas külg BC meetrites (ümardage ühelisteni) ja maatüki pindala hektarites (ümardage sajandikeni) Soovitakse rajada teelõik maatüki tipust A külje BC keskpunktini Kui pikk teelõik meetrites (ümardage ühelisteni) tuleks rajada? Lahendus Teeme esmalt abistava joonise Külje BC pikkuse leidmiseks kasutame koosinusteoreemi m BC 7 7 7 7 cos 6 Pindala on kõige lihtsam leida etteantud kahe külje ja nendevahelise nurga abil 7 7sin S 569,5 m 5, 6ha Mediaani AD leidmiseks on erinevad võimalused Ilmselt kõige lihtsam on kasutada mediaani valemit 7 7 BC m ( m) Mediaani saab leida ka kasutades vektorite abi

Võib ka leida näiteks nurga C suurus koosinusteoreemi abil AC BC AB cosc C ja seejärel koosinusteoreemiga mediaan AB BC AD AC CD AC CD cosc ( m) ÜLESANDED ) Leia avaldise täpne väärtus ilma taskuarvutita a) 8sin cos sin 8 b) 6cos7 cos7 c) 6 6 tan sin 6 d) sin 7 cos 7 V: ; -6; 6; ) Lahenda võrrand sin + cos = V: n, n, n Z ) On antud funktsioon f() = sin - sincos + cos a) Lihtsusta f() + sin - cos b) Lahenda võrrand f() = c) Lahenda võrratus f() cos V: ; n, arctan n, n Z ; R ) KRE 97 Lahenda võrrand cos - cos = cos( - ) n V: = n, = n, nz 6 5) KRE97 Lihtsusta avaldis: sin( ) sin( ) cos( ) cos( ) tan( ) ja arvuta, kui V: + tan; sin( ) cos( ) 6) Lihtsusta avaldis: V : tan sin tan( ) cos( ) cos ( ) 7) RE999 (5p) Leia sin, kui cos rahuldab võrrandit 5cos² + 5cos - = ja V: 5 8) RE (5p) Rombi ühe tipu juures olev nurk rahuldab tingimust sin cos Leia rombi pindala, kui pikem diagonaal on V: 96 9) RE Kolmnurga ühe tipu juures olev nurk rahuldab tingimust sin cos Leia kolmnurga pindala, kui kolmnurga küljed on erineva pikkusega ja nurga vastaskülg on 6 ning lähiskülg 6 V: 8

cos ) RE On antud funktsioon f ( ), ; cos Selgita, kas funktsioon f() on määratud lõigul Leia vahemikus ; a) funktsiooni f() nullkohad; ; b) vahemikud, kus funktsioon f() on positiivne ja kus see on negatiivne; c) funktsiooni f() kasvamis- ja kahanemisvahemikud; d) funktsiooni f() maksimumpunkt Skitseeri funktsiooni f() graafik vahemikus otspunktides; a), ; b) X ;, X c) X ;, X ; ; d) Pma ; ; V: Ei ole määratud ; ; ; ) Riigieksam (p) Lahenda võrrand cos - sin =, kui ; Leia parameetri b kõik väärtused, mille korral võrranditel cos - sin = ja sin b leiduvad ühised lahendid, kui ; Leia funktsiooni y = sin periood ja skitseeri selle funktsiooni graafik, kui ; Skitseerige samale joonisele funktsiooni y = sin graafik V: ) ; ;; ; ;); ;) ) Riigieksam (5p) Vaatleme funktsioone f() = cos ja g() = sin a) Avalda cos suurus sin kaudu b) Lõigul ; () lahenda võrrand f() = g() () joonesta ühes ja samas teljestikus funktsioonide f() ja g() graafikud Leia joonise abil väärtused, mille korral f() < g() 5 5 V: cos sin ; ; ; ; ; 6 6 6 6 ) Riigieksam (5p) Antud on funktsioon f() = sin lõigul ; a) Lahenda võrrand f() = b) Joonesta funktsiooni y = sin graafik ja kandke eelmises punktis leitud lahendid joonisele 5

c) Kolmnurgas ABC olgu C = 9º, A = ja AB = Tõesta, et kolmnurga ABC pindala võrdub väärtusega f() d) Leia nurk nii, et eelmises punktis antud kolmnurga pindala väärtus on V: 5 ;75 ;95 ;55 ;5 ) Riigieksam (p) Amsterdam - Berliin - Praha moodustavad kolmnurga (vt joonist), mille kaks nurka on 5 ja Kui kaugel on Amsterdam Berliinist ja Praha Amsterdamist? Vastused anna täpsusega km Berliin B Amsterdam A 8 km Praha V: 6 km ja 77 km 5) Riigieksam (p) Kolm teed magistraaltee, maantee ja külavahetee moodustavad kolmnurga ABC, milles A = B = 5 ja AB = km (vt joonist) Kui pikk on teelõik AC? Kell pööras liikluseeskirjade rikkuja punktis A magistraalteelt maanteele ja jätkas sõitu kiirusega km/h ristmiku C suunas Samal ajal (kell ) alustas punktist B sõitu mööda külavaheteed ristmiku C suunas politseiinspektor, kes jõudis kohale 5 sekundiga Kas politseiinspektor jõudis ristmikule C enne liikluseeskirjade rikkujat? Põhjenduseks esitage arvutused 5 P A magistraaltee km B 5 külavahetee maantee V: AC on ligikaudu,6 km; kiiruseületaja s 6) Riigieksam (p) Antud on funktsioon f() = cos lõigul ; a) Lahenda võrrand f() = b) Joonesta funktsiooni y = cos graafik ja kandke eelmises punktis leitud lahendid joonisele c) Kolmnurgas ABC olgu C = 9, B = ja AB = Tõesta, et kolmnurga f ABC kaatetite summa võrdub cos sin d) Leia nurk nii, et eelmises punktis antud kolmnurga pindala väärtus oleks C V: 5 7 6 6 6 6 ; ; ; ; 5 6

7) Riigieksam (5p) Antud on funktsioon f() = cos sin a) Lihtsusta funktsiooni avaldist b) Arvutage f() täpne väärtus, kui sin = 5 c) Määra, kas f() on paaris- või paaritu funktsioon d) Lahenda võrrand f() = lõigul ; e) Joonesta ühes ja samas teljestikus funktsioonide y = cos ja y = -cos graafikud lõigul ; V: cos ; ; paarisfunktsioon ; 5 ;5 ;5 ;5 5 8) RE 5(5p) Joonesta samas teljestikus funktsioonide y = sin ja y = cos graafikud Määra lõigul ; graafikute lõikepunkti koordinaadid Põhjenda 5 vastust V: L ; 9) RE 6(5p) Leia suuruse a väärtused, mille korral võrrandil cos = 5a leidub lahend, mis kuulub lõiku ; V:, a,6 ) RE 7(p) Antud on funktsioon y =sin lõigul ; ) Leia funktsiooni nullkohad ja muutumispiirkond ) Joonista funktsiooni graafik ) Kasutades saadud graafikut, leia a) funktsiooni positiivsus- ja negatiivsuspiirkond; b) argumendi väärtused, mille korral y <- 7 V: ;; ; ; Y ; ; X ;, X ; ; ; 6 6 ) RE 8(p) Kolmnurkse väljaku ühe külje pikkus on m, selle külje lähisnurgad on ja 7 ning kolmanda nurga tipus asetseb kolmnurga tasapinnaga ristuv lipumast Lipumasti tipp paistab nürinurga tipust maapinna suhtes 7 nurga all Arvutage väljaku pindala ja lipumasti kõrgus V: m ;, m ) RE 8(5p) ) Lihtsusta avaldis cos + sin tan + cos ) Joonesta funktsioonide f() = cos ja g() = cos graafikud lõigul ; ühes ja samas teljestikus ning leidke graafikute lõikepunktide abstsissid ;, mille korral g() < ) Leia punkti ) joonise abil argumendi väärtused lõigul f() V: cos ; ; ; ; ; ;, ; ) RE 9(p) Sirge tee ääres asuvad talud A, B ja D Iga talu juurest viib otsetee postkontorisse C (vt joonist) Kulude kokkuhoiu eesmärgil otsustas vallavalitsus sulgeda liiklemiseks teed AC ja BC ning jätkata vaid teede AB ja CD hooldamist Plaanil mõõtkavaga : on tee AB pikkus 9 mm Teades, et teede AD ja BD 7

pikkus on võrdne ning CAB = 5 ja ABC = 5, leidke, mitme kilomeetri võrra pikeneb teede sulgemise tõttu talude A ja B elanike teekond postkontorisse C? Lõppvastus andke täpsusega, km V: A:,9 km võrra ja B:,9 km võrra 5 ) RE 9(5p) On antud funktsioonid f ( ) sin sin 6 6 ja g() = sin ) Näita, et f () = cos ) Leia võrrandi g() = cos lahendid, mis asuvad lõigul [;π ] ) Joonesta ühes ja samas koordinaatteljestikus funktsioonide y = f () ja y = g() graafikud ning lahendage joonise põhjal võrratus f () > g() lõigul [;π ] 7 7 V: ; ; ; ; ; ; 6 6 6 6 5) RE (p) Rööpküliku KLMN diagonaal LN on 6,7 cm ja külg LM on 5, cm Nurk KNL on º Märgi andmed joonisele Arvuta rööpküliku KLMN ümbermõõt ja pindala Nurga KNL poolitaja lõikab rööpküliku külge KL punktis T Arvuta lõikude KT ja TL pikkused NB! Kõik lõppvastused ümarda kümnendikeni V: P 9,7cm; S 5,cm ; KT,cm; TL 5,cm 6) RE (p) Joonisel on funktsioonide f() = cos ja g() = sin graafikud lõigul [; ] ) Kirjuta joonisele funktsioonide nimetused ) Lahenda võrrand cos = sin lõigul [; ] ) Joonesta samale joonisele funktsiooni h() = cos graafik lõigul [; ] ) Leia jooniselt kõigi kolme funktsiooni ühine negatiivsuspiirkond lõigul [; ] 8

7) RE (5p) Kolm kaatrit kohtusid merel punktis O Pärast kohtumist suundus esimene kaater põhja, teine ida ja kolmas lõuna suunas ) Kaks tundi pärast kohtumist olid kaatrid jõudnud vastavalt punktidesse A,B ja C, mis on täisnurkse kolmnurga ABC tippudeks I ja II kaatri vaheline kaugus oli 6 km ning II kaatri kiirus oli 6 km/h võrra suurem I kaatri kiirusest Leia I ja III kaatri vaheline kaugus tundi pärast kohtumist ) I ja III kaater peatusid pärast -tunnist sõitu, II kaater jätkas liikumist samadel tingimustel veel ühe tunni ja jõudis punkti D Leidke nurga ADC suurus / V: km; 68 8) RE (p) a) Arvuta avaldise sin sin täpne väärtus, kui cos b) Leia funktsiooni f ( ) sin suurim ja vähim väärtus lõigul ; c) Leia parameetri a väärtused nii, et võrrandil sin a 9a sin oleks lõigul ; täpselt neli erinevat lahendit V: ; ymin,; yma ; a, a 8, a, a 9 9 9) KT Seinale on riputatud suur Hiina lehvik Lehvik on kujult ringi sektori kujuline, kesknurgaga o ja raadiusega cm Leidke selle lehviku pindala Vastus ümardage ühelisteni V: 9 cm ) KT Omanik tahab tellida purjelaevale kolmnurkse purje Leidke purje ümbermõõt ja pindala Kas ristkülikukujulisest kangast mõõtmetega m m on võimalik valmistada selline puri (NB! Ilma õmblusteta)? Põhjendage oma vastust (näiteks tehke joonis) V: m, 6 m, on võimalik 6 o o cm ) RE (5p) Maatükist ABCD, kus AB= 5 m, BC= 5m, AD= m, ABC = 9º, BAD = º ja BCD = 9º, õnnestus müüa vaid kolmnurkne osa ABD a) Tehke ülesande tekstile vastav joonis ja märkide andmed joonisele b) Arvutage müüdud maatüki ümbermõõt c) Mitu protsenti kogu maatükist jäi müümata? Lõppvastus ümardage kümnendikeni V: P=5 m; 55,6% 9

) RE (5p) ) RE (p) Metsaäärne põllumaa on täisnurkse trapetsi kujuline Põllumaad tahetakse metsloomade eest kaitsta võrguga Põllumaa lühem diagonaal on m, pikem haar m ja nendevaheline nurk Mitu meetrit võrku kulub põllumaa piiramiseks? Lõppvastus esitage täpsusega meeter V: 66 m ) RE (p) On antud funktsioon f ( ) cos Lahendage lõigul [; π ] võrrand f ( ) 8 Võrrandi f () a = lahendite vahe lõigul [; π ] on 7 Leidke arvutuste teel parameetri a väärtus V: ; ; a 5) RE 5 (5p) Mis teravnurga α korral on avaldise sin cos5 sin väärtus,5? V: 6 6) RE 5 (p) Õpilane Mari joonestas GeoGebra arvutiprogrammi abil kolmnurga ABC Kolmnurga külg BC oli pikkusega cm ja selle külje lähisnurgad olid ACB = 5 ja ABC = 5 Mari joonestas küljele BC kõrguse AD, mis jaotas kolmnurga ABC kaheks osaks: kolmnurkadeks ABD ja ACD Kuna nurk ABD oli korda suurem kui nurk ACD, siis arvas Mari, et ka kolmnurga ACD pindala on korda suurem kui kolmnurga ABD pindalaarvutage kolmnurkade ACD ja ABD pindalad ning otsustage, kas Maril oli õigus V: S ABD,7; SACD, 7) RE 6 (5p) On antud funktsioon f ( ) sin Joonestage funktsiooni f () graafik lõigul ; 5 Lahendage võrrand sin( ) sin, kui ; V:, 6 6 8) RE 6 (p) Kolmnurkse maatüki ABC külg AB on 7 m ja külg AC on 7 m Nurk antud külgede vahel on Arvutage maatüki kolmas külg BC meetrites (ümardage ühelisteni) ja maatüki pindala hektarites (ümardage sajandikeni) Soovitakse rajada teelõik maatüki tipust A külje BC keskpunktini Kui pikk teelõik meetrites (ümardage ühelisteni) tuleks rajada? V: ligikaudu 6 m; ligikaudu 5,6 ha; ligikaudu m

9) RE 7 K(5p) V: cos ; m 6 ) RE 7 K(p)V: km; 9 km ) RE 7 L(p) V: cos ; a ;;

) RE 8 K(p) Bermuda kolmnurk, Bermuda saarte, Florida lõunatipu ja Puerto Rico vaheline Atlandi ookeani osa, mis on saanud tuntuks rohkete selgitamata laeva- ja lennuõnnetuste tõttu (allikas: http://entsyklopeediaee/artikkel/bermuda_kolmnurk) Bermuda kolmnurga tipud on Miami, San Juan ja Hamilton Miami ja Hamiltoni vahemaa on 676 km ning kolmnurga sisenurgad nende tippude juures on vastavalt 5,7 ja 59, (vt joonist) Arvutage Bermuda kolmnurga pindala täpsusega km V: Bermuuda kolmnurga pindala on 8 km ) RE 8 L(p) Lihtsustage avaldis sin cos cos sin Lahendage võrrand cos = ja joonise abil võrratus cos <, kui [; π] 5 V: cos+; ;