DSM_4

Seotud dokumendid
Microsoft PowerPoint - RRand_MEMS.ppt

Microsoft Word - EVS_ISO_IEC_27001;2014_et_esilehed.doc

(Tõrked ja töökindlus \(2\))

Võrguinverterite valik ja kasutusala päikeseelektrijaamades Robert Mägi insener

REQUEST FOR AN ASSIGNMENT OF LEI (fond) LEI KOODI MÄÄRAMISE TAOTLUS (fond) 1. FUND DATA / FONDI ANDMED: Legal Name / Ametlik nimi: Other Fund Names /

Sissejuhatus GRADE metoodikasse

EESTI STANDARD EVS-EN 1790:1999 This document is a preview generated by EVS Teemärgistusmaterjalid. Kasutusvalmid teekattemärgised Road marking materi

PowerPoint Presentation

Ppt [Read-Only]

EESTI STANDARD EVS-EN :2000 This document is a preview generated by EVS Terastraat ja traattooted piirete valmistamiseks. Osa 4: Terastraadist

Kehtiv alates Vormi TSD lisa 3 Applicable from Annex 3 of Form 3 Unofficial translation Maksu- ja Tolliamet Estonian Tax and Cus

Microsoft PowerPoint - Kalle Kukk, Estfeed.pptx

Microsoft Word - EVS_ISO_31000;2010_et_esilehed

tallinn arvudes 2003.indd

Kuidas, kus ja milleks me kujundame poliitikaid Kuidas mõjutavad meid poliitikad ja instrumendid Euroopa Liidu ja riigi tasandil Heli Laarmann Sotsiaa

Jätkuv UNIKAALSUS viib uuendusteni LED-TOODETE KATALOOG 2016

Piima ja tooraine pakkumise tulevik kogu maailmas Erilise fookusega rasvadel ja proteiinidel Christophe Lafougere, CEO Gira Rakvere, 3rd of October 20

Title here

Pealkiri

Kuidas hoida tervist töökohal?

EST_Web_QIG_TU-P1284.cdr

SAF 7 demo paigaldus. 1.Eeldused SAF 7 demo vajab 32- või 64-bitist Windows 7, Window 8, Windows 10, Windows Server 2008 R2, Windows Server 2012, Wind

Kommunikatsiooniteenuste arendus IRT0080 Loeng 5/2013 Satelliitside teenused Avo Ots telekommunikatsiooni õppetool TTÜ raadio- ja sidetehnika instituu

SQL

Microsoft Word - MM_17 13[1] lisa 3

Microsoft Word - Lisa 4_Kohtususteemide vordlus

Powakaddy

Scanned Image

Microsoft PowerPoint - BPP_MLHvaade_juuni2012 (2)

PowerPoint Presentation

rp_ IS_3

Kliiniliste soovituste koostamine

Väljaandja: Vabariigi Valitsus Akti liik: välisleping Teksti liik: algtekst Jõustumise kp: Avaldamismärge: RT II 2008, 17, 49 Eesti Vabarii

COM(2004)651/F1 - ET

Microsoft Word - Loppukilpailu2015_16_tehtavat_viro_1

KUULA & KORDA INGLISE KEEL 1

E-õppe ajalugu

Väljaandja: Vabariigi Valitsus Akti liik: välisleping Teksti liik: algtekst Jõustumise kp: Avaldamismärge: RT II 2010, 18, 90 Eesti Vabarii

EESTI STANDARD EVS-ISO 24510:2008 This document is a preview generated by EVS JOOGIVEE- JA KANALISATSIOONITEENUSTEGA SEOTUD TEGEVUSED Juhised joogivee

Rahvusvaheline motokross Baltimere Karikas 2015 Soome Eesti Läti Leedu Kooskõlastanud: EMF-i alajuht; Kinnitanud: EMF peasekretär 1. Aeg ja koht: 18.0

EVS standardi alusfail

EST_web_QIG_TU-PS2(V1.1R).cdr

untitled

Vorm_V1_2014_18.02

III OSA. RAADIOSAGEDUSALA 3600 MHz 1000 GHz Rahvusvahelise Telekommunikatsiooni Liidu konventsiooni ja põhikirja täiendavate raadioeeskirjadega määrat

Inglise keele ainekava 5.klassile Kuu Õpitulemused Õppesisu Kohustuslik hindamine September 1. Räägib loomadest. Vaba aeg. Animals (Wild life 2. Kuula

Microsoft Word - C035736e.doc

Print\A4\QualifyReduced.pmt

Avatud ja läbipaistev e-riik: Ees6 kui rajaleidja Andrus Kaarelson RIA peadirektori asetäitja riigi infosüsteemi alal 10. oktoober 2017

Lp. firmajuht!

Slide 1

Tuuleenergeetika võimalikkusest Eestis

EESTI STANDARD EVS-ISO/IEC 25021:2014 This document is a preview generated by EVS SÜSTEEMI- JA TARKVARATEHNIKA Süsteemide ja tarkvara kvaliteedinõuded

ANOVA Ühefaktoriline dispersioonanalüüs Treeningu sagedus nädalas Kaal FAKTOR UURITAV TUNNUS Mitmemõõtmeline statistika Kairi Osula 2017/kevad

PowerPoint Presentation

Väljaandja: Vabariigi Valitsus Akti liik: välisleping Teksti liik: algtekst Jõustumise kp: Avaldamismärge: RT II 2008, 29, 84 Eesti Vabarii

Väljaandja: EÜEVAN Akti liik: otsus Teksti liik: algtekst Avaldamismärge: RT II 2002, 4, 7 Otsus nr 7/2001 (UE-EE 813/01), millega võetakse vastu ting

Erasmus+: Euroopa Noored eraldatud toetused 2015 KA1 NOORTE JA NOORSOOTÖÖTAJATE ÕPIRÄNNE NOORTEVAHETUSED R1 1. taotlusvoor Taotleja Taotluse pealkiri

Microsoft Word - 08.doc

Kommunikatsiooniteenuste arendus (IRT0080) loeng 8/2014 Võrkude haldus Avo 1

Väljaandja: Vabariigi Valitsus Akti liik: välisleping Teksti liik: algtekst Jõustumise kp: Avaldamismärge: RT II 2009, 22, 55 Eesti Vabarii

Microsoft Word - polkaudio 2010 hinnakiri

(Microsoft PowerPoint - Town Centre Futures 2 Steve Kemp.ppt [\334hilduvusre\376iim])

EESTI STANDARD EVS-ISO/IEC 27000:2015 This document is a preview generated by EVS INFOTEHNOLOOGIA Turbemeetodid Infoturbe halduse süsteemid Ülevaade j

Magnetic MRO

Väljavõte:

Energiatarbimise juhtimine Energiaefektiivsus Argo Rosin

Säästuvõimalused Hotels 25% Offices 39% Restaurants 31% Residential 27% Hospitals 18% Schools / Unis 34% Shopping centres 49 %

Energiasääst hoone automatiseerimise kaudu

Kuidas saavutada energiaõhusus? Passiivsed meetmed Tõhus aparatuur ja paigaldus (10 to 15%) Madal energiatarve, soojustatud hoone... Aktiivsed meetmed Seadmete kasutuse optimeerimine (5 to 15%) Seadmete mitte kasutamisel, nende väljalülitamine, mootorite või kütte optimaalne reguleerimine Kuni 40% säästu on võimalik saavutada mootorite optimaalse juhtimisega, kasutades muundureid ja automaatikaseadmeid Kuni 30% säästu valgustuses on võimalik saavutada valgustuse optimaalse juhtimisega Püsiv jälgimine ja parandamine ehk hooldus (2 to 8%) Range hooldusprogramm, sh pidevad mõõtmised ning kõrvalekalletele reageerimine

Kuidas tagada energiatõhususe jätkusuutlikkus Mõõda (energiaarvestid, energikvaliteedi mõõtmisseadmed) Fikseeri prioriteedid (madala energiatarbega seadmed, isolatsioonimaterjalid, kvaliteet, töökindlus) Automatiseeri (hoone haldussüsteemid, valgustussüsteemid, mootorite juhtseadmed, kodu juhtseadmed, sagedusmuundurid) Jälgi ja parenda (Energiahaldussüsteemid ja - tarkvara, kaugseiresüsteemid)

Miks mõõtmistäpsus ja mõõteriista klass on oluline

Energia mõõtmisel 2 peamist eesmärki Lepingulised arved kliendi/rentniku ja energiatootja või edastaja vahel (In this case IEC 62053-21 for Classes 1 and 2 and IEC 62053-22 for Classes 0.5S and 0.2S become applicable to measure active energy. The full measurement chain CT, VT and measurement unit can reach a precision class Cl of 1 in low voltage, Cl 0.5 in medium voltage and 0.2 in high voltage, or even 0.1 in the future). Ettevõttesisene arveldamine eesmärgiga määrata iga toote tootmise energiakulu. (In this case of a precision class between 1 and 2 for the whole chain (CT, VT and measurement station) is sufficient).

Milleks kasutada kogutavaid andmeid? Elektrotehnilised andmed muudetakse mitmesuguseid eesmärke kandvaks infoks: muuta käitumist kasutajatel, et hallata energiat targalt ning lõpuks vähendab üldist energiakulu Suurendada töötajate/tarbijate tõhusust Vähendada energiatarbe kulusid aidata säästa energiat, mõistes kuidas energiat kasutatakse ja kuidas suurema energiatõhususe eesmärkidel seadmete kasutust ja protsesse optimeerida optimeerida ja suurendada võrgus oleva aparatuuri eluiga Vährndades ja vältides katkestusi või yagades paremat energiakvaliteeti suurendada protsesside tootlikkust.

Energiakasutajate harjumuste muutmine Kasutades kulude jaotamise aruanded, saab kontrollida kommunaalteenuste arvete õigsust, jagada osakondade põhiselt kulusid, jagada energiatarbimise osas vastutust organisatsiooni ehk ettevõtte tasandil, teha faktidel põhinevaid energiasäästlikke otsuseid. Eelnev toob kaasa energiassästlikkuse osa vastutustundlikuma käitumise ja seeläbi vähendadatakse kulusid.

Kuidas saavutada energiasääst Energiatarbimise vähendamise meetmed sama tulemuse saamiseks kasutada vähem energiat ja veendudes et ületarbimist poleks (näiteks inimtühjad täisvalgustuses koridorid). Üheks võimaluseks on kasutada lampe mis on sama energiatarbe juures suurema valgusviljakusega. Teiseks võimaluseks on ülevalgustatud aladel vähendada valgustust, grupeerides seadmeid või reguleerides valgust. Energiakulude vähendamise meede energiatarbimise nihutamise kaudu kõrge tariifiga perioodilt madala tariifiga perioodile. Sama kehtib ka tipu koormuste vähendamisel. Olemuselt väheneb energiaühiku hind Töökindluse meetmed tagamaks seadmete töö järjepidevuse vältides katkestusi ja seadmete süsteemide taaskäivitustest tingitud kadusid ja kulusid. Katkestused tingivad tootepartiide riknemisi, jms.

Igakülgne energiastrateegia

Mootorid ja nende asendamine 60% tarbitavast energiast kasutatakse mootorites Sõltuvalt võimsusest, kõrge kasuteguriga mootorid töötavad 1%- 10% tõhusamalt kui standardsed mootorid. Mootorid mis töötavad pikaajaliselt on otstarbekas asendada kõrge kasuteguriga mootoritega. Eriti need mootorid mis vajavad ümbermähkimist. Ümbermähitud mootorid on enamasti 3%-4% väiksema kasuteguriga ja vähemefektiivsed kui originaalmootorid. Mootorite kasutegur ja tõhusus on suurim kui nad töötavad 60%- 100% nimikoormusel. Kasutegur väheneb järsult kui koormus langeb alla 50%. Uuringud näitavad, et 1/3 mootoritest on üledimensioneeritud ja töötavad allpool 50% nimikoormust. Keskmine mootorite koormus on 60%. Suured madala võimsusteguriga mootorid võivad suurendada reaktiivenergia osakaalu tarbimises ja reaktiivenergia tasu. Mootorite vahetamisel tuleb lähtuda ka järelejäänud elueast. Arvestada tuleb seda, et vaatamata sellele, et mõned mootorid on üledimensioneeritud, kuid vähe ja harva koormatud ning tarbivad nii vähe energiat, et neid pole majanduslikult otstarbekas välja vahetada.

Muud meetmed mootoritele Improve active energy efficiency by simply turn off motors when they are not required. This may require improvements in automatic control, or education, monitoring and perhaps incentives for operators. If the operator of the motor is not accountable for its energy consumption, they are more likely to leave it running even when not in use. Check and if necessary correct shaft (võll) alignment, starting with the largest motors. Misaligned motor couplings waste energy and eventually lead to coupling failure and downtime. An angular offset of 0.6 mm in a pin coupling can result in a power loss of as much as 8%.

Pumbad, Ventilaatorid ja Sagedusmuundurid 63% mootorite poolt kasutatavast energiast kulutatakse pumpades ja ventilaatorites sõltumata tegelikust vajadusest, töötavad mootorid enamikel juhtudel täiskiirusel.

To change the flow or pressure in the system, there are a number of possible methods. The suitability will depend on the design of the fan or pump, e.g. Whether a pump is a positive displacement pump or rotodynamic pump, whether a fan is a centrifugal fan or axial fan. Multiple pumps or fans: This leads to step increase when additional pumps or fans are switched in, making fine control difficult. Usually there are efficiency losses as the real needs are somewhere between the possible steps. Stop/start control: This is only practical where intermittent flow is acceptable. Flow control valve: This uses a valve to reduce the flow by increased frictional resistance to the output of the pump. This wastes energy since the pump is producing a flow which is then cut back by the valve. In addition, pumps have a preferred operating range, and increasing the resistance by this method can force the pump to operate in a range where its efficiency is lower (wasting even more energy) and where its reliability is reduced. Damper: Similar in effect to a flow control valve in a pumping system, this reduces the flow by obstructing the output of the fan. This wastes energy since the fan is producing a flow which is then cut back by the damper. Bypass control: This technique keeps the pump running at full power and routes surplus fluid output from the pump back to the source. It allows a low value of flow to be achieved without risk of increasing the output pressure, but inefficiency is very high since the energy used to pump the surplus fluid is entirely wasted. Spillage valve: Similar in effect to a bypass control valve in a pumping system, this technique keeps the fan running at full power and vents surplus flow. Inefficiency is very high since the energy used to move the vented air or gas is entirely wasted. Variable pitch: Some fan designs allow the angle of the blades to be adapted to change the output. Inlet guide vane: these are structures using fins to improve or disrupt the routing of air or gas into a fan. In this way they increase or decrease the airflow going in and hence increase or decrease the output.

Fan and pump applications are governed by the affinity laws Vool (nt l/s) on proportsionaalne võlli kiirusega. Kiiruse vähendamine poole võrra vähendab voolu poole võrra Pressure or head is proportional to the square of shaft speed. Pool kiirust annab neljandiku rõhu. Half the shaft speed gives you quarter the pressure Võimsus on proportsionaalne võlli kiiruse kuubiga. Power is proportional to the cube of shaft speed. Half the shaft speed uses one eighth of the power. Hence half the flow uses one-eighth of the power

Theoretical power saving with a fan running at half speed

Power versus flow rate for the different fan control methods: downstream damper, inlet vanes, and variable speed (top to bottom)

Millest veel sõltub sääst? Tegelik saavutatav sääst sõltub ventilaatori või pumba ehitusest ja disainist, kasutegurist, mootori mõõtmetest, kasutamise ajast, elektrienergiamaksumusest.

The drive can be integrated into a variety of possible control methods Control by fixing pressure but varying flow: This uses a pressure sensor connected to the VSD which in turn varies the speed allowing the fan or pump to increase or decrease the flow required by the system. This is a common method in water supply schemes where constant pressure is required but water is required at different flows dependant on the number of users at any given time. This is also common on centralised cooling and distribution systems and in irrigation where a varying number of spray heads or irrigation sections are involved. Heating system control: In heating and cooling systems there is a requirement for flow to vary based on temperature. The VSD is controlled by a temperature sensor, which increases or decreases the flow of hot or cold liquid or air based on the actual temperature required by the process. This is similar to pressure control, where the flow also varies, but a constant temperature requirement from a temperature sensor replaces that from a pressure sensor. Control by fixing flow but varying pressure: Constant flow may be required in irrigation and water supply systems. Since the water levels both upstream and downstream of the pumping station can change, the pressure will be variable. Also many cooling, chiller, spraying and washing applications require a specific volume of water to be supplied even if the suction and delivery conditions vary. Typically suction conditions vary when the height of a suction reservoir or tank drops and delivery pressure can change if filters blind or if system resistance increases occur through blockages etc. A flowmeter is used to keep the flow rate constant, normally installed in the discharge line.

The benefits achieved include Reduced energy consumption and hence cost savings by replacing inefficient control methods or other obsolete components such as two-speed motors Better control and accuracy in achieving required flow and pressure Reduced noise and vibration, as the inverter allows fine adjustment of the speeds and so prevents the equipment running at a resonant frequency of the pipes or ductwork Increased lifecycle and improved reliability, for example, pumps that are operated in a throttled condition usually suffer from reduced useful life Simplified pipe or duct systems (elimination of dampers, control valves & by-pass lines) Soft start & stop creates less risk of transient effects in the electrical network or mechanical stress on the rotating parts of the pump or fan. This also reduces water hammer in pumps, because the drive provides smooth acceleration and deceleration instead of abrupt speed variations Reduced maintenance

Valgustus Sõltuvalt hoone kasutamisest võib valgustuse energiatarve olla üle 35% kogutarbest. Valgustuse juhtimine on üks lihtsamaid võimalusi säästa energiakulusid väikeste investeerimiskuludega. Valgustuse juhtimine on üks enimlevinud energiasäästu meetmeid.

Lighting control Some of the simplest methods include: Timer switches to turn off lights after a fixed period has passed. Timers are best deployed in areas where occupancy is well defined (e.g. in hotel corridors where the time for a person to pass through is predictable). Occupancy sensors / movement detectors to turn off lights when no movement has been detected for a certain period. Occupancy sensors are best deployed in offices, storerooms, stairwells, kitchens and bathrooms where the use of the facilities cannot be predicted with a high degree of accuracy during the day. Photoelectric cells / daylight harvesting sensors to control lights near windows. When bright exterior light is available, lamps are turned off or dimmed. Programmable timers to switch lights on and off at predetermined times (e.g. Shop fronts, ensure office lights are turned off at nights and weekends). Dimmable lights to maintain a low level of illumination at off-peak periods (e.g. A car parking lot which needs to be fully illuminated during peak use, perhaps until midnight, but which can have lower ambient illumination from midnight until dawn) Voltage regulators to optimize the power consumed. Ballasts perform this function on fluorescent lighting. Voltage regulators are also available for other lighting types such as high pressure sodium lamps.

Tarbimise juhtimine

Load management strategies Peak demand avoidance - The objective is to keep the total energy consumed in each period below the limit. All loads in a facility are defined in one of three categories: critical, essential, and non-essential loads. Usually only non-essential loads are shed, and the order of shedding can be configured. Providing the customer has enough non-essential loads to be able to impact their peak consumption, it may be possible to reduce the demand charge by as much as 10% to 30%. Demand charge can be up to 60% of the bill. The application usually pays for itself in one year or less.

Load management strategies Load scheduling - Utilities often have different rates that apply for different times of the day. During normal daily business hours, the rates are the highest. Many users shift, or reschedule loads to take advantage of lower rates. These are loads that are not time sensitive or critical.. Demand response (curtailment) Demand response is a means to manage the demand from customers taking supply conditions into account. Utilities may offer financial incentives to customers to reduce load during periods when the utility does not have the distribution capacity to handle the total demand. A curtailment is activated following a notification by phone or via a signal output from the utility revenue meter. Typically there is 30 to 60 minutes advance notice. The customer systematically reduces load until the curtailment level is obtained, either by manually reducing or shutting off loads or by an automated PLC controlled system. The utility or aggregator then signals the start of the curtailment period. After the curtailment period is complete, the utility or aggregator signals the end of the curtailment period. The customer may then re-establish normal facility loading and production. On-site generation

Koormuste haldamise strateegiad Demand response (curtailment) Demand response is a means to manage the demand from customers taking supply conditions into account. Utilities may offer financial incentives to customers to reduce load during periods when the utility does not have the distribution capacity to handle the total demand. In some countries, third-party aggregators may manage schemes that monitor the network capacity and the realtime price of electricity on the network. Participants in the scheme receive incentives to shed load, creating capacity which the aggregator can sell into the network. In each case, the utility or aggregator offers a contract including an agreement from the customer to reduce the kw consumption at their site down to a predetermined level when notified. These contracts may contain both emergency curtailments (when the participants in the scheme must comply or face penalties) and opt-in curtailments (where participants can evaluate the specific conditions for that particular curtailment and decide whether or not to accept). Automated demand response control applications usually pay for themselves in one year or less.

Nõudluse vastus - Demand response Demand response is a means to manage the demand from customers taking supply conditions into account. Utilities may offer financial incentives to customers to reduce load during periods when the utility does not have the distribution capacity to handle the total demand. A curtailment is activated following a notification by phone or via a signal output from the utility revenue meter. Typically there is 30 to 60 minutes advance notice. The customer systematically reduces load until the curtailment level is obtained, either by manually reducing or shutting off loads or by an automated PLC controlled system. The utility or aggregator then signals the start of the curtailment period. After the curtailment period is complete, the utility or aggregator signals the end of the curtailment period. The customer may then re-establish normal facility loading and production. The return on investment from demand response schemes will vary depending on local tariff rates and electricity market. The incentive generally takes the form of a credit for the demand reduction during the response period. If the customer has enough non-essential loads to be able to impact peak consumption, he may be able to benefit from incentives that in effect reduce the cost per unit by as much as 30%.

Load management strategies On-site generation On-site generation increases the flexibility available to facility operators. Instead of shedding loads, on-site generation can provide the power required to keep running during a period of peak avoidance or demand curtailment. The automated control system can be extended to integrate control of on-site generation facilities into the scheme. If the customer is buying electricity from a supplier at a time-of-use rate, the control system can be configured to continuously monitor the current cost of electricity from the supplier and compare it to the cost of energy generated on site using another fuel source. When the cost of electricity rises above the cost of using the generator (replacing the fuel), the control scheme automatically shifts load to the on-site generation. When the cost falls, load is shifted back to the supply utility.

Power factor correction Kui elektrienergia tarnija maksustab reaktiivvõimsust, on võimalik võimsusteguri korrektsiooni rakendades saada märkimisväärset kokkuhoidu elektriarvetelt Lahendused või meetmed võimsusteguri parandamiseks on tavaliselt passivset laadi ja ei too kaasa muudatusi olemasolevates protsessides ja töötajate käitumises. Investeeringute tasuvusaeg on sageli lühem kui üks aasta.

Power factor calculation The power factor is the ratio of kw to kva. The closer the power factor approaches its maximum possible value of 1, the greater the benefit to consumer and supplier. PF = P (kw) / S (kva), kus P = Active power and S = Apparent power

Power factor improvement allows the use of smaller transformers, the use of switchgear and cables, etc. reducing of power losses and voltage drop in an installation reducing of electricity bills

Power diagram S 2 = P 2 + Q 2

Example in the calculation of active and reactive power

Values of cos ϕ and tan ϕ for commonly-used equipment

Multiplying factor for cable size as a function of cos ϕ

Technical/economic optimization Losses in cables are proportional to the current squared, and are measured by the kwh meter of the installation. Reduction of the total current in a conductor by 10% for example, will reduce the losses by almost 20%. Power factor correction capacitors reduce or even cancel completely the (inductive) reactive current in upstream conductors, thereby reducing or eliminating voltage drops. Over compensation will produce a voltage rise at the capacitor level. By improving the power factor of a load supplied from a transformer, the current through the transformer will be reduced, thereby allowing more load to be added. In practice, it may be less expensive to improve the power factor, than to replace the transformer by a larger unit.

Kompenseerimise printsiip Q C = P (tanϕ tanϕ' ) = P ( 1 (cosϕ) 2 1 1 (cosϕ') 2 1)

Harmonic filtering Many solutions to improve efficient use of electricity can have side effects, bring harmonics into the electrical network. High-efficiency motors, variable speed drives, electronic ballasts for fluorescent lights, and computers can all generate electrical pollution which can have significant effects. Harmonics can create transient overvoltage conditions that cause protection relays to trip and result in production downtime. They increase heat and vibration and thereby decrease efficiency and shorten life of neutral conductors, transformers, motors and generators. Power factor correction capacitors may magnify harmonics, and can suffer from overloading and premature aging.

Disturbances caused by harmonics Overloads on distribution networks due to the increase in rms current Overloads in neutral conductors due to the cumulative increase in third-order harmonics created by single-phase loads Overloads, vibration and premature ageing of generators, transformers and motors as well as increased transformer hum Overloads and premature ageing of power-factor correction capacitors Distortion of the supply voltage that can disturb sensitive loads Disturbances in communication networks and on telephone lines

Harmonics have a major economic impact: Premature ageing of equipment means it must be replaced sooner unless oversized right from the start Overloads on the distribution network can require higher subscribed power levels and increase losses Distortion of current waveforms provokes nuisance tripping that can stop production

Harmonics have major economic effects in installations: Increases in energy costs Premature ageing of equipment Production losses

Maximum permissible harmonic levels

Main effects of harmonics in installations Resonance Increased losses (in conductors, asynchronous machines, transformers, capacitors) Overloads on equipment (Generators, Uninterruptible power systems, Transformers, Asynchronous machines, Capacitors, Neutral conductors

Harmonic management U h = Z h I h When the harmonic current of order h flows through impedance Zh, it creates a harmonic voltage Uh.

Resonance Ls = Supply inductance (upstream network + transformer + line) C = Capacitance of the power factor correction capacitors R = Resistance of the linear loads Ih = Harmonic current To avoid resonance, antiharmonic coils can be installed in series with the capacitors.

Increased losses THD - Total harmonic distortion

Overloads - Transformers Derating required for a transformer supplying electronic loads

Derating factor for transformers If the transformer supplies an overall load comprising 40% of electronic loads, it must be derated by 40%. Standard UTE C15-112 provides a derating factor for transformers as a function of the harmonic currents. Current with a rectangular waveform (1/h spectrum (1)): k = 0.86 Frequency-converter current (THD 50%): k = 0.80

Asynchronous machines Standard IEC 60892 defines a weighted harmonic factor (Harmonic voltage factor) for which the equation and maximum value are provided below

Power values and harmonics Reactive power :Q = U1 x I1 x sinϕ1 When harmonics are present, the distortion power D is defined as D = (S 2 - P 2 - Q 2 ) 1/2 The individual harmonic distortion is defined as the percentage of harmonics for order h with respect to the fundamental

Power values and harmonics The rms value of the voltage and current can be calculated as a function of the rms value of the various harmonic orders The term THD means Total Harmonic Distortion and is a widely used notion in defining the level of harmonic content in alternating signals. For a signal y, the THD is defined as

Power values and harmonics The equation below is equivalent to the above, but easier and more direct when the total rms value is available For voltage harmonics, the equation is

Relation between power factor and THD

To limit the propagation of harmonics in the distribution network

To limit the propagation of harmonics in the distribution network

To limit the propagation of harmonics in the distribution network

To limit the propagation of harmonics in the distribution network

To limit the propagation of harmonics in the distribution network Install reactors When variable-speed drives are supplied, it is possible to smooth the current by installing line reactors. By increasing the impedance of the supply circuit, the harmonic current is limited. Installation of harmonic suppression reactors on capacitor banks increases the impedance of the reactor/capacitor combination for high-order harmonics. This avoids resonance and protects the capacitors. Select the suitable system earthing arrangement TNC system In the TNC system, a single conductor (PEN) provides protection in the event of an earth fault and the flow of unbalance currents. Under steady-state conditions, the harmonic currents flow in the PEN. The latter, however, has a certain impedance with as a result slight differences in potential (a few volts) between devices that can cause electronic equipment to malfunction. The TNC system must therefore be reserved for the supply of power circuits at the head of the installation and must not be used to supply sensitive loads. TNS system This system is recommended if harmonics are present. The neutral conductor and the protection conductor PE are completely separate and the potential throughout the distribution network is therefore more uniform.