Ruutvormid Denitsioon 1. P n Ütleme, et avaldis i;j=1 a ijx i x j ; kus a ij = a ji ; a ij 2 K ja K on korpus, on ruutvorm üle korpuse K muutujate x 1

Suurus: px
Alustada lehe näitamist:

Download "Ruutvormid Denitsioon 1. P n Ütleme, et avaldis i;j=1 a ijx i x j ; kus a ij = a ji ; a ij 2 K ja K on korpus, on ruutvorm üle korpuse K muutujate x 1"

Väljavõte

1 Ruutvormid Denitsioon. P n Ütleme, et avaldis i;j= a ijx i x j ; kus a ij = a ji ; a ij K ja K on korus, on ruutvorm üle koruse K muutujate x ;;x n suhtes. Maatriksit =(a ij ) nimetame selle ruutvormi maatriksiks. Igale ruutfunktsionaalile n-m~o~otmelisel vektorruumil üle K vastab ruutvorm n muutujast üle K; ja vastuidi (vt. def. X..4). Denitsioon. Öeldakse, et ruutvorm üle K ; ;; r K; on kanoonilisel kujul, kui tal on kuju x + x + + rx r ; kus ruutvorm üle R on normaalkujul, kui tal on kuju x + +x,x +,,x r ; ruutvorm üle on normaalkujul, kui tal on kuju x + x + +x r Ruutvormi viimine kanoonilisele kujule tähendab sellise regulaarse muutujate vahetuse leidmist, mille tagajärjel saame kanoonilisel kujul oleva ruutvormi (uutest muutujatest). Maatrikskujul v~oib ruutvormi esitada korrutisena x t x; kus x = x x n on muutujate veerg ja on vaadeldava ruutvormi maatriks. Regulaarse muutujate vahetuse 8 < x = c y + +c n y n v~oib maatrikskujul esitada v~ordusena x = y; kus y = y y n x n = c n y ++c nn y n on uute muutujate veerg; =(cij ) ja det() = Sellise muutujate vahetusega teiseneb ruutvorm x t x ruutvormiks (y) t (y) =y t ( t )y; seega ärast muutujate vahetuse tegemist tekkiva ruutvormi maatriks on t

2 Ülesanne.. Viige kanoonilisele kujule ruutvormi x x +x x Selle ruutvormi maatriks on Kanoonilisele kujule viimiseks teisendame maatrikseid,,,,,,,,,,,,,,,,,, Teisenused, mida tegime, olid järgmised liitsime esimesele reale ja veerule teise, lahutasime teisest reast ja veerust -ga korrutatud esimese, lahutasime kolmandast reast ja veerust -ga korrutatud esimese ning l~ouks liitsime kolmandale reale ja veerule teise. Viimase maatriksi ülemisest oolest on näha, et ruutvormi kanooniline kuju on y, y ; viimase maatriksi alumine ool annab meile kanoonilisele kujule viiva muutujate vahetuse Smaatriksi, see muutujate vahetus on 8 < x = y, y,y Kontroll,, t,, x = y + y x = y =,,, Ülesanne. Viige järgmised ruutvormid normaalkujule a) üle R, b) üle F = x +4x +x +4x x,x x ; F =x +x,x +4x x,x x,4x x ; F =,4x,x,x,4x x +4x x +8x x ; F 4 =x +x,x +x x +4x x =,

3 Millised nendest ruutvormidest on omavahel ekvivalentsed? (Kahte ruutvormi nimetatakse ekvivalentseteks, kui üks on teisest saadav mingi muutujate vahetuse teel.) Viime ruutvormi F kanoonilisele kujule,,,, 4,,,,,,, 4, 4,, 4,,, Viime ruutvormi F kanoonilisele kujule,,,,,,,,,,,,,,,,,,,,,, Viime ruutvormi F kanoonilisele kujule,4,,4,,4,4,, , 8 8 8,,4 8,4,4,4, Viime ruutvormi F 4 kanoonilisele kujule,4,4,4,4,,,,,,,

4 Tulemused v~otame kokku järgmise tabelina Ruutvorm Kanooniline kuju Normaalkuju üle R Normaalkuju üle F y +4y,y z +z,z u +u +u F y,y,y z,z,z u +u +u. F,4y +y,4y z,z,z u +u +u F 4 y,4y z,z u +u Teoreem. Kaks ruutvormi on ekvivalentsed üle (üle R) arajasti siis, kui neil on samad normaalkujud üle (üle R). Siit on näha, et üle R on ekvivalentsed F ja F ning üle on ekvivalentsed F ;F ja F Denitsioon. P n Ruutvorm i;j= a ijx i x j üle R on ositiivselt (negatiivselt) määratud, kui P P n i;j= a n ijc i c j > ( i;j= a ijc i c j < ) iga vektori (c ;;c n )R n korral. Teoreem (X.4.4). Ruutvorm on ositiivselt määratud siis ja ainult siis, kui tema maatriksi äämiinorid on k~oik ositiivsed, ja negatiivselt määratud siis ja ainult siis, kui tema maatriksi äämiinorid on vaheldumisi negatiivsed ja ositiivsed. Ülesanne. Leidke k~oik arameetri a reaalarvulised väärtused, mille korral ruutvorm x, x +4x +(a,)x x + a x x on ositiivselt määratud. Vaadeldava ruutvormi maatriks on = a, a,, Leiame selle maatriksi äämiinorid. Esiteks, M =>Teiseks, M = a, a,, a =,,, a, =,,a +a, 4 =,a +a, 9 4 Kuna v~orratusel,a + a, 9 > ei ole reaalarvulisi lahendeid, siis vaadeldav ruutvorm ei ole 4 ositiivselt määratud ühegi a väärtuse korral. a a 4 Ülesanne 4. Leidke k~oik arameetri a reaalarvulised väärtused, mille korral ruutvorm ax + ax +(a,)x +x x +ax x +x x on negatiivselt määratud. Vaadeldava ruutvormi maatriks on a a Maatriksi äämiinorid on M = a; M = M = a a a = a a a, = a, ; a = a, a + a + a, a, a +,a=,a + a a a, 4

5 Lahendades v~orratustesüsteemi 8 < a < a, >,a + < saame, et ruutvorm on negatiivselt määratud, kui, <a<, Denitsioon 4 (IX...). Eukleidilise ruumi E lineaarteisendust ' nimetatakse sümmeetriliseks, kui iga a; b E korral ('(a);b)=(a; '(b)) Sümmeetrilise teisenduse maatriks ortonormeeritud baasi suhtes on sümmeetriline maatriks. Kui eukleidilise ruumi lineaarteisenduse maatriks ortonormeeritud baasi suhtes on sümmeetriline, siis see teisendus on sümmeetriline (teoreem IX...). Ülesanne. T~oestage, et eukleidilise ruumi sümmeetrilise lineaarteisenduse erinevatele omaväärtustele vastavad omavektorid on ortogonaalsed. Olgu '(a) =a ja '(b) =b; kus = ; a = ja b =. Siis (a; b) =(a; b) =('(a);b)=(a; '(b)) = (a; b) =(a; b) Seega (, )(a; b) =;millest järeldub, et (a; b) = Teame, et ruutmaatriks üle koruse K on sarnane diagonaalmaatriksiga arajasti siis, kui leidub selle maatriksi omavektoreist koosnev baas vektorruumis K n.teoreemi IX... ~ohjal leidub iga sümmeetrilise maatriksi jaoks üle R tema omavektoreist koosnev ortonormeeritud baas eukleidilises ruumis R n (standardse skalaarkorrutamise suhtes). Seega iga sümmeetriline maatriks üle R on sarnane diagonaalmaatriksiga,, on diagonaalmaatriks, mille äädiagonaalil on maatriksi omavektorid ning veeruvektorid on ortonormeeritud omavektorid. Kuna lause IX... ~ohjal on ortogonaalmaatriks, s.t., = t ; siis t on diagonaalmaatriks. Järelikult kehtib järgmine väide. Lause. Iga ruutvormi üle R saab viia kanoonilisele kujule ortogonaalse muutujate vahetusega, s.o. muutujate vahetusega, mille maatriks on ortogonaalmaatriks. Ülesanne. Viige ruutvorm x +x +x +4x x,4x x,8x x kanoonilisele kujule ortogonaalse muutujate vahetusega. Ruutvormi maatriks on,,4 =,,4 Selle maatriksi karakteristlik olünoom on,,,,,,4,,4, =,,4,, = = (,) + (, ), 4 9, =(,)(8, +, 8), 4, 9,,4, = (, )(, + ) =,(, ) (, )

6 Seega omaväärtused ja nende kordsused on = ; r = ; = ; r = Järelikult ruutvormi kanooniline kuju on y + y +y. Muutujate vahetuse leidmiseks tuleb leida veel omavektoreist koosnev ortonormeeritud baas. Omaväärtusele vastavate omavektorite leidmiseks lahendame lineaarv~orrandisüsteemi maatriksiga, E =, 4,4,,4 4 (muutujate z ;z ;z suhtes, et mitte segi ajada ruutvormis esinevate muutujatega). Siit saame, et z =,z +z Selle v~orrandisüsteemi lahendite fundamentaalsüsteemiks (ja seega omaväärtusele vastavaiks lineaarselt s~oltumatuiks omavektoreiks) on näiteks a = (,;;); a = (;;) Omaväärtusele vastavate omavektorite leidmiseks lahendame järgmise lineaarv~orrandisüsteemi,8,,8,8, E =,,4,,4 ;,,4,,9,9 ehk z =, z ;z =,z Seega lahendite fundamentaalsüsteem koosneb näiteks vektorist a =(,;,;) Omavektorite a ;a ;a ortogonaliseerimiseks eukleidilises ruumis R v~otame b = a =(,;;); ja b = a + k b ; kus k =, (a ;b) (b;b) =,,4 = 4 ; s.t. b = a + 4 b =(;;) +, 8 ; 4 ; = ; 4 ; On selge, et b ja b on omaväärtusele vastavad omavektorid. Kuna a ja b on sümmeetrilise maatriksi erinevatele omaväärtustele vastavad omavektorid, siis on nad ülesande ~ohjal ortogonaalsed. Samal ~ohjusel on ortogonaalsed a ja b. Seega v~oime v~otta b = a =(,;,;) Vektorid b ;b ;b tuleb veel ortonormeerida. Selleks leiame nende ikkused jb j = q q 4 jb j= + += 9 = ;jb j= +4+4= ning vektorid e = b =, ; ; ; 4+= ;

7 e = e = b = b = ; 4, ;, ; ; Niisiis oleme saanud omavektoreist koosneva ortonormeeritud baasi e ;e ;e Järelikult kanoonilisele kujule y + y +y viiva muutujavahetuse maatriks on Kontroll t = = =, 4,,, 4,,,, 4,,4,,,4,, 4, ; = Olgu F ja G ruutvormid üle R muutujatest x ;;x n maatriksitega ja vastavalt ning olgu F ositiivselt määratud. Teoreemist X.4.. järeldub, et leidub selline muutujavahetus, mis viib F ja G korraga kanoonilisele kujule. Selgitame, kuidas seda teha. Viies ruutvormi F kanoonilisele kujule saame leida regulaarse maatriksi nii, et t = kus a i > iga i =;;n korral. V~ottes D = a a a ; a n a a n saame, et D t ( t )D =(D) t (D)=E; s.t. saame F viia normaalkujule. Vaatleme ruutvormi maatriksiga (D) t (D) Viime ta kanoonilisele kujule ortogonaalse muutujate vahetusega U (DU) t (DU)=U t ((D) t (D))U = b b b n Siis (DU) t (DU) = U t (D) t (D)U = U t EU = U, U = E; s.t. muutujate vahetus maatriksiga DU viib kanoonilisele kujule nii F kui G 7

8 Ülesanne 7. Leidke muutujate vahetus, mis viib ruutvormid F = x +x +x +x x,x x ; G=x +8x +x +8x x +x x +4x x korraga kanoonilisele kujule. Uurime, kas üks ruutvormidest F ja G on ositiivselt määratud. Ruutvormide F ja G maatriksid on vastavalt Kuna maatriksi korral =,, ja = M = > ; M =, =>; M =,, =>; siis F on ositiivselt määratud. Viime ruutvormi F kanoonilisele kujule,,,,,,,,,,,,, Seega t = E; kus =,, Kuna saadud F kanooniline kuju osutus juba normaalkujuks, siis v~otame D = E. Leiame nüüd t =, =, 4 4,, = = 8

9 Viime ruutvormi maatriksiga kanoonilisele kujule ortogonaalse muutujate vahetusega. Selleks leiame maatriksi karakteristliku olünoomi, j, Ej =, =(4,4+ )(, ) +4+,+4, +,, =, 4, +4 +,, + =, +7, =,(, 7 + ) =,(, )(, ) Seega maatriksil on ühekordsed omaväärtused ; ja Leiame vastavad omavektorid z = z a =(;,;); z =,z z,, =,z a =(;;,);, z = z,,,, z, = z a =(;;), z = z,, Kuna erinevatele omaväärtustele vastavad omavektorid on ortogonaalsed, siis vektoreid a ;a ;a ortogonaliseerida ei ole enam vaja. Nende ortonormeerimisel saame e = ;, ; ; e = e = ; ; ; ;, Seega ruutvormi, mille maatriks on ; kanooniline kuju on y +y muutujavahetus maatriksiga U =,, ; ja sellele kujule viib Kokkuv~ottes, ruutvormid F ja G viib kanoonilisele kujule muutujavahetus maatriksiga U =,,,, 4 =,,, 9

Polünoomi juured Juure definitsioon ja Bézout teoreem Vaadelgem polünoomi kus K on mingi korpus. f = a 0 x n + a 1 x n a n 1 x

Polünoomi juured Juure definitsioon ja Bézout teoreem Vaadelgem polünoomi kus K on mingi korpus. f = a 0 x n + a 1 x n a n 1 x 1 5.5. Polünoomi juured 5.5.1. Juure definitsioon ja Bézout teoreem Vaadelgem polünoomi kus K on mingi korpus. f = a 0 x n + a 1 x n 1 +... + a n 1 x + a n K[x], (1) Definitsioon 1. Olgu c K. Polünoomi

Rohkem

7 KODEERIMISTEOORIA 7.1 Sissejuhatus Me vaatleme teadete edastamist läbi kanali, mis sisaldab müra ja võib seetõttu moonutada lähteteadet. Lähteteade

7 KODEERIMISTEOORIA 7.1 Sissejuhatus Me vaatleme teadete edastamist läbi kanali, mis sisaldab müra ja võib seetõttu moonutada lähteteadet. Lähteteade 7 KODEERIMISTEOORIA 7.1 Sissejuhatus Me vaatleme teadete edastamist läbi kanali, mis sisaldab müra ja võib seetõttu moonutada lähteteadet. Lähteteade kodeeritakse, st esitatakse sümbolite kujul, edastatakse

Rohkem

vv05lah.dvi

vv05lah.dvi IMO 05 Eesti võistkonna valikvõistlus 3. 4. aprill 005 Lahendused ja vastused Esimene päev 1. Vastus: π. Vaatleme esiteks juhtu, kus ringjooned c 1 ja c asuvad sirgest l samal pool (joonis 1). Olgu O 1

Rohkem

Matemaatiline analüüs IV 1 3. Mitme muutuja funktsioonide diferentseerimine 1. Mitme muutuja funktsiooni osatuletised Üleminekul ühe muutuja funktsioo

Matemaatiline analüüs IV 1 3. Mitme muutuja funktsioonide diferentseerimine 1. Mitme muutuja funktsiooni osatuletised Üleminekul ühe muutuja funktsioo Matemaatiline analüüs IV 1 3. Mitme muutuja funktsioonide diferentseerimine 1. Mitme muutuja funktsiooni osatuletised Üleminekul üe muutuja funktsioonidelt m muutuja funktsioonidele, kus m, 3,..., kerkib

Rohkem

Relatsiooniline andmebaaside teooria II. 6. Loeng

Relatsiooniline andmebaaside teooria II. 6. Loeng Relatsiooniline andmebaaside teooria II. 5. Loeng Anne Villems ATI Loengu plaan Sõltuvuste pere Relatsiooni dekompositsioon Kadudeta ühendi omadus Sõltuvuste pere säilitamine Kui jõuame, siis ka normaalkujud

Rohkem

lvk04lah.dvi

lvk04lah.dvi Lahtine matemaatikaülesannete lahendamise võistlus. veebruaril 004. a. Lahendused ja vastused Noorem rühm 1. Vastus: a) jah; b) ei. Lahendus 1. a) Kuna (3m+k) 3 7m 3 +7m k+9mk +k 3 3M +k 3 ning 0 3 0,

Rohkem

KM 1 Ülesannete kogu, 2018, s

KM 1 Ülesannete kogu, 2018, s MTMM.00.340 Kõrgem matemaatika 1 2018 sügis Ülesannete kogu 1. osa Põhiliste elementaarfunktsioonide tuletised (Const) = 0 (sinx) = cosx (arcsinx) = 1 1 x 2 (x α ) = α x α 1, α 0 (cosx) = sinx (arccosx)

Rohkem

Word Pro - digiTUNDkaug.lwp

Word Pro - digiTUNDkaug.lwp / näide: \ neeldumisseadusest x w x y = x tuleneb, et neeldumine toimub ka näiteks avaldises x 2 w x 2 x 5 : x 2 w x 2 x 5 = ( x 2 ) w ( x 2 ) [ x 5 ] = x 2 Digitaalskeemide optimeerimine (lihtsustamine)

Rohkem

loeng7.key

loeng7.key Grammatikate elustamine JFLAPiga Vesal Vojdani (TÜ Arvutiteaduse Instituut) Otse Elust: Java Spec https://docs.oracle.com/javase/specs/jls/se8/html/ jls-14.html#jls-14.9 Kodutöö (2. nädalat) 1. Avaldise

Rohkem

Treeningvõistlus Balti tee 2014 võistkonnale Tartus, 4. novembril 2014 Vastused ja lahendused 1. Vastus: 15, 18, 45 ja kõik 0-ga lõppevad arvud. Olgu

Treeningvõistlus Balti tee 2014 võistkonnale Tartus, 4. novembril 2014 Vastused ja lahendused 1. Vastus: 15, 18, 45 ja kõik 0-ga lõppevad arvud. Olgu Treeningvõistlus Balti tee 014 võistkonnale Tartus, 4. novembril 014 Vastused ja lahendused 1. Vastus: 15, 18, 45 ja kõik 0-ga lõppevad arvud. Olgu b arvu k üheliste number ning a arv, mille saame arvust

Rohkem

Matemaatilised meetodid loodusteadustes. I Kontrolltöö I järeltöö I variant 1. On antud neli vektorit: a = (2; 1; 0), b = ( 2; 1; 2), c = (1; 0; 2), d

Matemaatilised meetodid loodusteadustes. I Kontrolltöö I järeltöö I variant 1. On antud neli vektorit: a = (2; 1; 0), b = ( 2; 1; 2), c = (1; 0; 2), d Matemaatilised meetodid loodusteadustes I Kontrolltöö I järeltöö I variant On antud neli vektorit: a (; ; ), b ( ; ; ), c (; ; ), d (; ; ) Leida vektorite a ja b vaheline nurk α ning vekoritele a, b ja

Rohkem

Matemaatiline analüüs III 1 4. Diferentseeruvad funktsioonid 1. Diferentseeruvus antud punktis. Olgu funktsiooni f : D R määramispiirkond D R selles p

Matemaatiline analüüs III 1 4. Diferentseeruvad funktsioonid 1. Diferentseeruvus antud punktis. Olgu funktsiooni f : D R määramispiirkond D R selles p Matemaatiline analüüs III 4. Diferentseeruvad funktsioonid. Diferentseeruvus antud punktis. Olgu funktsiooni f : D R määramispiirkond D R selles paragravis mingi (lõplik või lõpmatu) intervall ning olgu

Rohkem

Diskreetne matemaatika I Kevad 2019 Loengukonspekt Lektor: Valdis Laan 20. juuni a.

Diskreetne matemaatika I Kevad 2019 Loengukonspekt Lektor: Valdis Laan 20. juuni a. Diskreetne matemaatika I Kevad 2019 Loengukonspekt Lektor: Valdis Laan 20. juuni 2019. a. 2 Sisukord 1 Matemaatiline loogika 7 1.1 Lausearvutus.................................. 7 1.1.1 Põhimõistete meeldetuletamine....................

Rohkem

IMO 2000 Eesti võistkonna valikvõistlus Tartus, aprillil a. Ülesannete lahendused Esimene päev 1. Olgu vaadeldavad arvud a 1, a 2, a 3,

IMO 2000 Eesti võistkonna valikvõistlus Tartus, aprillil a. Ülesannete lahendused Esimene päev 1. Olgu vaadeldavad arvud a 1, a 2, a 3, IMO 000 Eesti võistkonna valikvõistlus Tartus, 19. 0. aprillil 000. a. Ülesannete lahendused Esimene päev 1. Olgu vaadeldavad arvud a 1, a, a 3, a 4, a 5. Paneme tähele, et (a 1 + a + a 3 a 4 a 5 ) (a

Rohkem

12. Marek Kolk, Kõrgem matemaatika, Tartu Ülikool, Algfunktsioon ja määramata integraal Sisukord 12 Algfunktsioon ja määramata integraal 1

12. Marek Kolk, Kõrgem matemaatika, Tartu Ülikool, Algfunktsioon ja määramata integraal Sisukord 12 Algfunktsioon ja määramata integraal 1 2. Marek Kolk, Kõrgem matemaatika, Tartu Ülikool, 203-. 2 Algfunktsioon ja määramata integraal Sisukord 2 Algfunktsioon ja määramata integraal 9 2. Sissejuhatus................................... 50 2.2

Rohkem

prakt8.dvi

prakt8.dvi Diskreetne matemaatika 2012 8. praktikum Reimo Palm Praktikumiülesanded 1. Kas järgmised graafid on tasandilised? a) b) Lahendus. a) Jah. Vahetades kahe parempoolse tipu asukohad, saame graafi joonistada

Rohkem

Tartu Ülikool Matemaatika-informaatikateaduskond Puhta Matemaatika Instituut Algebra õppetool Riivo Must Mõned katsed üldistada inversseid poolrühmi M

Tartu Ülikool Matemaatika-informaatikateaduskond Puhta Matemaatika Instituut Algebra õppetool Riivo Must Mõned katsed üldistada inversseid poolrühmi M Tartu Ülikool Matemaatika-informaatikateaduskond Puhta Matemaatika Instituut Algebra õppetool Riivo Must Mõned katsed üldistada inversseid poolrühmi Magistritöö Juhendaja: prof. Mati Kilp Tartu 2004 Sisukord

Rohkem

Microsoft Word - Errata_Andmebaaside_projekteerimine_2013_06

Microsoft Word - Errata_Andmebaaside_projekteerimine_2013_06 Andmebaaside projekteerimine Erki Eessaar Esimene trükk Teadaolevate vigade nimekiri seisuga 24. juuni 2013 Lehekülg 37 (viimane lõik, teine lause). Korrektne lause on järgnev. Üheks tänapäeva infosüsteemide

Rohkem

Mittekorrektsed ülesanded 2008

Mittekorrektsed ülesanded 2008 Mittekorrektsed ülesanded 008 Sisukord 1 Näiteid mittekorrektsetest ül.-test ja iseregulariseerimisest 5 1.1 Sissejuhatus............................. 5 1.1.1 Lineaarne võrrand ruumis R...............

Rohkem

8.klass 4 tundi nädalas, kokku 140 tundi Hulkliikmed ( 45 tundi) Õppesisu Hulkliige. Hulkliikmete liitmine ja lahutamine ning korrutamine ja jagamine

8.klass 4 tundi nädalas, kokku 140 tundi Hulkliikmed ( 45 tundi) Õppesisu Hulkliige. Hulkliikmete liitmine ja lahutamine ning korrutamine ja jagamine 8.klass 4 tundi nädalas, kokku 140 tundi Hulkliikmed ( 45 tundi) Hulkliige. Hulkliikmete liitmine ja lahutamine ning korrutamine ja jagamine üksliikmega. Hulkliikme tegurdamine ühise teguri sulgudest väljatoomisega.

Rohkem

elastsus_opetus_2013_ptk2.dvi

elastsus_opetus_2013_ptk2.dvi Peatükk 2 Pinge 1 2.1. Jõud ja pinged 2-2 2.1 Jõud ja pinged Kehale mõjuvad välisjõud saab jagada kahte rühma. 1. Pindjõud ehk kontaktjõud on põhjustatud keha kontaktist teiste kehade või keskkondadega.

Rohkem

Neurovõrgud. Praktikum aprill a. 1 Stohhastilised võrgud Selles praktikumis vaatleme põhilisi stohhastilisi võrke ning nende rakendust k

Neurovõrgud. Praktikum aprill a. 1 Stohhastilised võrgud Selles praktikumis vaatleme põhilisi stohhastilisi võrke ning nende rakendust k Neurovõrgud. Praktikum 11. 29. aprill 2005. a. 1 Stohhastilised võrgud Selles praktikumis vaatleme põhilisi stohhastilisi võrke ning nende rakendust kombinatoorsete optimiseerimisülesannete lahendamiseks.

Rohkem

pkm_2010_ptk6_ko_ja_kontravariantsus.dvi

pkm_2010_ptk6_ko_ja_kontravariantsus.dvi Peatükk 6 Kovariantsus ja kontravariantsus ehk mis saab siis kui koordinaatideks pole Descartes i ristkoordinaadid 1 6.1. Sissejuhatus 6-2 6.1 Sissejuhatus Seni oleme kasutanud DRK, kuid üldjuhul ei pruugi

Rohkem

PIDEVSIGNAALIDE TÖÖTLEMINE

PIDEVSIGNAALIDE TÖÖTLEMINE DIGITAALNE SPEKTRAALANALÜÜS Loengumaterjal 3 Toomas Ruuben USIC Algortm analüüsb sgnaal autokorrelatsoonmaatrks omaväärtus ja vastavad omavektored sgnaal sageduste kndlaksmääramseks P USIC ( f) vks ( f)

Rohkem

Tartu Ülikool Matemaatika-informaatikateaduskond Matemaatilise statistika instituut Ann-Mari Koppel Determinatsioonikordaja ja prognoosikordaja Bakala

Tartu Ülikool Matemaatika-informaatikateaduskond Matemaatilise statistika instituut Ann-Mari Koppel Determinatsioonikordaja ja prognoosikordaja Bakala Tartu Ülikool Matemaatika-informaatikateaduskond Matemaatilise statistika instituut Ann-Mari Koppel Determinatsioonikordaja ja prognoosikordaja Bakalaureusetöö (6 EAP) Juhendaja: Ene Käärik, PhD Tartu

Rohkem

Matemaatika ainekava 8.klass 4 tundi nädalas, kokku 140 tundi Kuu Õpitulemus Õppesisu Algebra (65 t.) Geomeetria (60 t.) Ajavaru kordamiseks (15 õppet

Matemaatika ainekava 8.klass 4 tundi nädalas, kokku 140 tundi Kuu Õpitulemus Õppesisu Algebra (65 t.) Geomeetria (60 t.) Ajavaru kordamiseks (15 õppet Matemaatika ainekava 8.klass 4 tundi nädalas, kokku 140 tundi Algebra (65 t.) Geomeetria (60 t.) Ajavaru kordamiseks (15 õppetundi) septembernovember korrastab hulkliikmeid Hulkliige. Tehted liidab, lahutab

Rohkem

Scala ülevaade 1 Meetodid, muutujad ja väärtused. Süntaks 2 Lihtsad tüübid ja väärtused. 3 OOP, case-klassid ja mustrisobitus. 4 Puhta Scala väärtusta

Scala ülevaade 1 Meetodid, muutujad ja väärtused. Süntaks 2 Lihtsad tüübid ja väärtused. 3 OOP, case-klassid ja mustrisobitus. 4 Puhta Scala väärtusta Scala ülevaade 1 Meetodid, muutujad ja väärtused. Süntaks 2 Lihtsad tüübid ja väärtused. 3 OOP, case-klassid ja mustrisobitus. 4 Puhta Scala väärtustamine. 5 Keerulisemad tüübid. 6 Nähtavus, implitsiitsus.

Rohkem

Automaatjuhtimise alused Automaatjuhtimissüsteemi kirjeldamine Loeng 2

Automaatjuhtimise alused Automaatjuhtimissüsteemi kirjeldamine Loeng 2 Automaatjuhtimise alused Automaatjuhtimissüsteemi kirjeldamine Loeng 2 Laplace'i teisendus Diferentsiaalvõrrandite lahendamine ilma tarkvara toeta on keeruline Üheks lahendamisvõtteks on Laplace'i teisendus

Rohkem

MATEMAATILINE ANALÜÜS I. ESIMESE KONTROLLTÖÖ NÄITEÜLESANDED (1) Leida funktsiooni y = sin x + ln(16 x 2 ) määramispiirkond. (2) Leida funktsiooni y =

MATEMAATILINE ANALÜÜS I. ESIMESE KONTROLLTÖÖ NÄITEÜLESANDED (1) Leida funktsiooni y = sin x + ln(16 x 2 ) määramispiirkond. (2) Leida funktsiooni y = MATEMAATILINE ANALÜÜS I. ESIMESE KONTROLLTÖÖ NÄITEÜLESANDED () Leida funktsiooni y = sin + ln(6 ) määramispiirkond. () Leida funktsiooni y = arcsin( 5 + 5) + 9 määramispiirkond. () Leida funktsiooni määramispiirkond

Rohkem

Diskreetne matemaatika I praktikumiülesannete kogu a. kevadsemester

Diskreetne matemaatika I praktikumiülesannete kogu a. kevadsemester Diskreetne matemaatika I praktikumiülesannete kogu 2019. a. kevadsemester Sisukord 1 Tingimuste ja olukordade analüüsimine 3 2 Tõesuspuu meetod 5 3 Valemite teisendamine 7 4 Normaalkujud 7 5 Predikaadid

Rohkem

Word Pro - diskmatTUND.lwp

Word Pro - diskmatTUND.lwp Loogikaalgebra ( Boole'i algebra ) George Boole (85 864) Sündinud Inglismaal Lincolnis. 6-aastasena tegutses kooliõpetaja assistendina. Õppis 5 aastat iseseisvalt omal käel matemaatikat, keskendudes hiljem

Rohkem

loogikaYL_netis_2018_NAIDISED.indd

loogikaYL_netis_2018_NAIDISED.indd . Lihtne nagu AB Igas reas ja veerus peavad tähed A, B ja esinema vaid korra. Väljaspool ruudustikku antud tähed näitavad, mis täht on selles suunas esimene. Vastuseks kirjutage ringidesse sattuvad tähed

Rohkem

Microsoft PowerPoint - IRZ0020_praktikum4.pptx

Microsoft PowerPoint - IRZ0020_praktikum4.pptx IRZ0020 Kodeerimine i ja krüpteerimine praktikum 4 Julia Berdnikova, julia.berdnikova@ttu.ee www.lr.ttu.ee/~juliad l 1 Infoedastussüsteemi struktuurskeem Saatja Vastuvõtja Infoallikas Kooder Modulaator

Rohkem

III teema

III teema KORDAMINE RIIGIEKSAMIKS IV TRIGONOMEETRIA ) põhiseosed sin α + cos α = sin tanα = cos cos cotα = sin + tan = cos tanα cotα = ) trigonomeetriliste funktsioonide täpsed väärtused α 5 6 9 sin α cos α tan

Rohkem

Andmebaasid, MTAT loeng Normaalkujud

Andmebaasid, MTAT loeng Normaalkujud Andmebaasid, MTAT.03.264 6. loeng Normaalkujud E-R teisendus relatsiooniliseks Anne Villems Meil on: Relatsiooni mõiste Relatsioonalgebra Kus me oleme? Funktsionaalsete sõltuvuse pere F ja tema sulund

Rohkem

Imbi Traat, Natalja Lepik (Tartu Ülikool), 2013 E-kursuse Bayesi statistika Markovi ahelatega materjalid Aine maht 6 EAP Imbi Traat, Natalja Lepik (Ta

Imbi Traat, Natalja Lepik (Tartu Ülikool), 2013 E-kursuse Bayesi statistika Markovi ahelatega materjalid Aine maht 6 EAP Imbi Traat, Natalja Lepik (Ta Imbi Traat, Natalja Lepik (Tartu Ülikool), 2013 E-kursuse Bayesi statistika Markovi ahelatega materjalid Aine maht 6 EAP Imbi Traat, Natalja Lepik (Tartu Ülikool), 2013 Bayesi statistika Markovi ahelatega,

Rohkem

Sügis 2018 Kõrgema matemaatika 2. kontrolltöö tagasiside Üle 20 punkti kogus tervelt viis üliõpilast: Robert Johannes Sarap, Enely Ernits, August Luur

Sügis 2018 Kõrgema matemaatika 2. kontrolltöö tagasiside Üle 20 punkti kogus tervelt viis üliõpilast: Robert Johannes Sarap, Enely Ernits, August Luur Sügis 2018 Kõrgema matemaatika 2. kontrolltöö tagasiside Üle 20 punkti kogus tervelt viis üliõpilast: Robert Johannes Sarap, Enely Ernits, August Luure, Urmi Tari ja Miriam Nurm. Ka teistel oli edasiminek

Rohkem

DIGITAALTEHNIKA DIGITAALTEHNIKA Arvusüsteemid Kümnendsüsteem Kahendsüsteem Kaheksandsüsteem Kuueteistkü

DIGITAALTEHNIKA DIGITAALTEHNIKA Arvusüsteemid Kümnendsüsteem Kahendsüsteem Kaheksandsüsteem Kuueteistkü DIGITAALTEHNIKA DIGITAALTEHNIKA... 1 1. Arvusüsteemid.... 2 1.1.Kümnendsüsteem....2 1.2.Kahendsüsteem.... 2 1.3.Kaheksandsüsteem.... 2 1.4.Kuueteistkümnendsüsteem....2 1.5.Kahendkodeeritud kümnendsüsteem

Rohkem

ITI Loogika arvutiteaduses

ITI Loogika arvutiteaduses Predikaatloogika Predikaatloogika on lauseloogika tugev laiendus. Predikaatloogikas saab nimetada asju ning rääkida nende omadustest. Väljendusvõimsuselt on predikaatloogika seega oluliselt peenekoelisem

Rohkem

G4S poolt võetavad kohustused 1. G4S juurutab oma hinnastamispõhimõtetes käesolevale dokumendile lisatud hinnastamismaatriksi. Hinnastamismaatriks läh

G4S poolt võetavad kohustused 1. G4S juurutab oma hinnastamispõhimõtetes käesolevale dokumendile lisatud hinnastamismaatriksi. Hinnastamismaatriks läh G4S poolt võetavad kohustused 1. G4S juurutab oma hinnastamispõhimõtetes käesolevale dokumendile lisatud hinnastamismaatriksi. Hinnastamismaatriks lähtub järgmistest põhimõtetest. a. Hinnastamismaatriks

Rohkem

TARTU ÜLIKOOL MATEMAATIKA-INFORMAATIKATEADUSKOND MATEMAATILISE STATISTIKA INSTITUUT Astrid Haas Üldistatud lineaarne segamudel ESM-uuringu andmetele M

TARTU ÜLIKOOL MATEMAATIKA-INFORMAATIKATEADUSKOND MATEMAATILISE STATISTIKA INSTITUUT Astrid Haas Üldistatud lineaarne segamudel ESM-uuringu andmetele M TARTU ÜLIKOOL MATEMAATIKA-INFORMAATIKATEADUSKOND MATEMAATILISE STATISTIKA INSTITUUT Astrid Haas Üldistatud lineaarne segamudel ESM-uuringu andmetele Magistritöö (30 EAP) Finants- ja kindlustusmatemaatika

Rohkem

Infix Operaatorid I Infix operaatorid (näiteks +) ja tüübid (näiteks ->) kirjutatakse argumentide vahele, mitte argumentide ette. Näiteks: 5 + 2, 2*pi

Infix Operaatorid I Infix operaatorid (näiteks +) ja tüübid (näiteks ->) kirjutatakse argumentide vahele, mitte argumentide ette. Näiteks: 5 + 2, 2*pi Infix Operaatorid I Infix operaatorid (näiteks +) ja tüübid (näiteks ->) kirjutatakse argumentide vahele, mitte argumentide ette. Näiteks: 5 + 2, 2*pi*r^2, Float -> Int Infixoperaatori kasutamiseks prefix-vormis

Rohkem

Segamudelid2010.pdf

Segamudelid2010.pdf Peatükk 5 Dispersiooimaatriksi V hidamisest Üldistatud vähimruutude meetodit saame kasutada siis, kui teame vaatluste kovariatsiooimaatriksit V. Paraku eamasti pole uural sellist iformatsiooi. Seega tekib

Rohkem

XV kursus

XV kursus KORDAMINE RIIGIEKSAMIKS VI FUNKTSIOONID JA NENDE GRAAFIKUD. TULETISE RAKENDUSED.. Funktsiooni määramispiirkonna ( X ) moodustavad argumendi () väärtused, mille korral funktsiooni väärtus (y) on eeskirjaga

Rohkem

Matemaatiline maailmapilt MTMM Terje Hõim Johann Langemets Kaido Lätt 2018/19 sügis

Matemaatiline maailmapilt MTMM Terje Hõim Johann Langemets Kaido Lätt 2018/19 sügis Matemaatiline maailmapilt MTMM.00.342 Terje Hõim Johann Langemets Kaido Lätt 2018/19 sügis Sisukord *** 1 Sissejuhatus 1 1.1 Kursuse eesmärk.................................... 2 1.2 Matemaatika kui keel.................................

Rohkem

Andmed arvuti mälus Bitid ja baidid

Andmed arvuti mälus Bitid ja baidid Andmed arvuti mälus Bitid ja baidid A bit about bit Bitt, (ingl k bit) on info mõõtmise ühik, tuleb mõistest binary digit nö kahendarv kahe võimaliku väärtusega 0 ja 1. Saab näidata kahte võimalikku olekut

Rohkem

У : Ш& illi ELEMENTAARMATEMAATIKA I 1986

У : Ш& illi ELEMENTAARMATEMAATIKA I 1986 У : Ш& illi ELEMENTAARMATEMAATIKA I 1986 TARTU RIIKLIK ÜLIKOOL ELEMENTAARMATEMAATIKA Algpraktikum Ülesannete kogu matemaatikateaduskonna üliõpilastele ja ettevalmistusosakonna kuulajatele Viies trükk TARTU

Rohkem

Microsoft Word - Praks1.doc

Microsoft Word - Praks1.doc Segamudelid 1. praktikum Mida vähem andmeid, seda parem? (Üldistatud vähimruutude meetod ja heteroskedastilised andmed) Segamudelite praktikumides kasutame R-tarkvara. Kahel aastal on teostatud ühe füüsikalise

Rohkem

Eesti koolinoorte LIII matemaatikaolümpiaad 28. jaanuar 2006 Piirkonnavoor Hindamisjuhised Lp hindaja! 1. Juhime Teie tähelepanu sellele, et alljärgne

Eesti koolinoorte LIII matemaatikaolümpiaad 28. jaanuar 2006 Piirkonnavoor Hindamisjuhised Lp hindaja! 1. Juhime Teie tähelepanu sellele, et alljärgne Eesti koolinoorte LIII matemaatikaolümpiaad 28. jaanuar 2006 Piirkonnavoor Hindamisjuhised Lp hindaja! 1. Juhime Teie tähelepanu sellele, et alljärgnevas on 7. 9. klasside olümpiaadi I osa (testi) ning

Rohkem

Antennide vastastikune takistus

Antennide vastastikune takistus Antennide vastastikune takistus Eelmises peatükis leidsime antenni kiirgustakistuse arvestamata antenni lähedal teisi objekte. Teised objektid, näiteks teised antennielemendid, võivad aga mõjutada antenni

Rohkem

Osakogumite kitsendustega hinnang Kaja Sõstra 1 Eesti Statistikaamet Sissejuhatus Valikuuringute üheks oluliseks ülesandeks on osakogumite hindamine.

Osakogumite kitsendustega hinnang Kaja Sõstra 1 Eesti Statistikaamet Sissejuhatus Valikuuringute üheks oluliseks ülesandeks on osakogumite hindamine. Osakogumite kitsendustega hinnang Kaja Sõstra 1 Eesti Statistikaamet Sissejuhatus Valikuuringute üheks oluliseks ülesandeks on osakogumite hindamine. Kasvanud on nõudmine usaldusväärsete ja kooskõlaliste

Rohkem

19. Marek Kolk, Kõrgem matemaatika, Tartu Ülikool, Arvridade koonduvustunnused Sisukord 19 Arvridade koonduvustunnused Vahelduvat

19. Marek Kolk, Kõrgem matemaatika, Tartu Ülikool, Arvridade koonduvustunnused Sisukord 19 Arvridade koonduvustunnused Vahelduvat 9. Marek Kolk, Kõrgem matemaatika, Tartu Ülikool, 203-4. 9 Arvridade koonduvustunnused Sisukord 9 Arvridade koonduvustunnused 23 9. Vahelduvate märkidega read.......................... 24 9.2 Leibniz i

Rohkem

Microsoft Word - Lisa 3 PK matemaatika.docx

Microsoft Word - Lisa 3 PK matemaatika.docx Lisa 3 Pärnu Täiskasvanute Gümnaasiumi õppekava juurde Põhikooli ainekavad Ainevaldkond Matemaatika Ainevaldkonna kohustuslikud kursused: Ainevaldkonda kuulub matemaatika, mida õpitakse alates IV klassist.

Rohkem

1. AKE Ajalise keerukuse empiiriline hindamine

1. AKE Ajalise keerukuse empiiriline hindamine http://kodu.ut.ee/~kiho/ads/praktikum/ 4. PSK Paisksalvestus. Loendamine Mõisteid Paisktabel (Hashtable, HashMap) Paisktabeli kasutamine loendamisülesannetes Paiskfunktsioon, kollisoonid (põrked) Praktikumitööd

Rohkem

HWU_AccountingAdvanced_October2006_EST

HWU_AccountingAdvanced_October2006_EST 10. Kulude periodiseerimine Simulatsioone (vt pt 5) kasutatakse ka juhul, kui soovitakse mõnd saadud ostuarvet pikemas perioodis kulusse kanda (nt rendiarve terve aasta kohta). Selleks tuleb koostada erinevad

Rohkem

ma1p1.dvi

ma1p1.dvi Peatükk 1 Funktsioonid ja nendega seotud mõisted 1.1 Reaalarvud ja Arvtelg. Absoluutväärtuse mõiste. Reaalarvudest koosnevad hulgad. Enne arvu mõiste käsitlemist toome sisse mõned hulkadega seotud tähised.

Rohkem

Programmi Pattern kasutusjuhend

Programmi Pattern kasutusjuhend 6.. VEKTOR. TEHTE VEKTORITEG Vektoriks nimetatakse suunatud sirglõiku. 6... VEKTORI MÕISTE rvudega iseloomustatakse paljusid suurusi. Mõne suuruse määramiseks piisa ühest arvust ja mõõtühikust. Näiteks

Rohkem

PALMIKRÜHMAD Peeter Puusempa ettekanded algebra ja geomeetria õppetooli seminaril 11., 18. ja 25. jaanuaril a. 1. Palmikud ja palmikrühmad Ajalo

PALMIKRÜHMAD Peeter Puusempa ettekanded algebra ja geomeetria õppetooli seminaril 11., 18. ja 25. jaanuaril a. 1. Palmikud ja palmikrühmad Ajalo PALMIKRÜHMAD Peeter Puusempa ettekanded algebra ja geomeetria õppetooli seminaril 11., 18. ja 25. jaanuaril 2009. a. 1. Palmikud ja palmikrühmad Ajaloolisi märkmeid 1891 ilmus Adolf Hurwitzi 1 artikkel

Rohkem

DVD_8_Klasteranalüüs

DVD_8_Klasteranalüüs Kursus: Mitmemõõtmeline statistika Seminar IX: Objektide grupeerimine hierarhiline klasteranalüüs Õppejõud: Katrin Niglas PhD, dotsent informaatika instituut Objektide grupeerimine Eesmärk (ehk miks objekte

Rohkem

Eesti koolinoorte 66. füüsikaolümpiaad 06. aprill a. Vabariiklik voor. Gümnaasiumi ülesannete lahendused 1. (AUTOD) (6 p.) Kuna autod jäävad sei

Eesti koolinoorte 66. füüsikaolümpiaad 06. aprill a. Vabariiklik voor. Gümnaasiumi ülesannete lahendused 1. (AUTOD) (6 p.) Kuna autod jäävad sei Eesti koolinoorte 66. füüsikaolümpiaad 06. aprill 2019. a. Vabariiklik voor. Gümnaasiumi ülesannete lahendused 1. (AUTOD) (6 p.) Kuna autod jäävad seisma samaaegselt, siis läheme ühe ühe autoga seotud

Rohkem

+/- 7(chomsky???) Deduktiivne jama 1.Hulkade spetsifitseerimine. Hulk on samalaadsete objektide järjestamata kogum, mida käsitlet

+/- 7(chomsky???) Deduktiivne jama 1.Hulkade spetsifitseerimine. Hulk on samalaadsete objektide järjestamata kogum, mida käsitlet +/- 7(chomsky???) 17 29 30 31 32 33 34 Deduktiivne jama 1.Hulkade spetsifitseerimine. Hulk on samalaadsete objektide järjestamata kogum, mida käsitletakse kui tervikut.hulka kuuluvaid objekte nim. hulga

Rohkem

Word Pro - digiTUNDkaug.lwp

Word Pro - digiTUNDkaug.lwp ARVUSÜSTEEMID Kõik olulised arvusüsteemid on positsioonilised ehk arvu numbrid asuvad neile ettenähtud kindlatel asukohtadel arvujärkudes a i : a a a a a a a - a - a - a - a i Ainus üldtuntud mittepositsiooniline

Rohkem

1 / loeng Tekstitöötlus Sisend/väljund Teksti lugemine Sõnad

1 / loeng Tekstitöötlus Sisend/väljund Teksti lugemine Sõnad 1 / 16 7. loeng Tekstitöötlus Sisend/väljund Teksti lugemine Sõnad 2 / 16 Sisend/väljund vaikimisi: Termid: read, write?-read(x). : 2+3. X = 2+3.?-write(2+3). 2+3 true. Jooksva sisendi vaatamine: seeing?-

Rohkem

Praks 1

Praks 1 Biomeetria praks 3 Illustreeritud (mittetäielik) tööjuhend Eeltöö 1. Avage MS Excel is oma kursuse ankeedivastuseid sisaldav andmestik, 2. lisage uus tööleht, 3. nimetage see ümber leheküljeks Praks3 ja

Rohkem

Praks 1

Praks 1 Biomeetria praks 6 Illustreeritud (mittetäielik) tööjuhend Eeltöö 1. Avage MS Excel is oma kursuse ankeedivastuseid sisaldav andmestik, 2. lisage uus tööleht, nimetage see ümber leheküljeks Praks6 ja 3.

Rohkem

Eesti Ettevõtluskõrgkool Mainor rakenduskõrghariduse õppekava ROBOOTIKATARKVARA ARENDUS Õppekava nimetus Õppekava nimetus inglise keeles Kõrgharidusta

Eesti Ettevõtluskõrgkool Mainor rakenduskõrghariduse õppekava ROBOOTIKATARKVARA ARENDUS Õppekava nimetus Õppekava nimetus inglise keeles Kõrgharidusta Eesti Ettevõtluskõrgkool Mainor rakenduskõrghariduse õppekava ROBOOTIKATARKVARA ARENDUS Õppekava nimetus Õppekava nimetus inglise keeles Kõrgharidustaseme õpe Õppevorm(id) Õppeasutus Õppekava maht (EAP)

Rohkem

Microsoft Word - 56ylesanded1415_lõppvoor

Microsoft Word - 56ylesanded1415_lõppvoor 1. 1) Iga tärnike tuleb asendada ühe numbriga nii, et tehe oleks õige. (Kolmekohaline arv on korrutatud ühekohalise arvuga ja tulemuseks on neljakohaline arv.) * * 3 * = 2 * 1 5 Kas on õige, et nii on

Rohkem

Pealkiri on selline

Pealkiri on selline Kuidas keerulisemad alluvad muudaksid oma käitumist, kui juht seda soovib? Jaana S. Liigand-Juhkam Millest tuleb juttu? - Kuidas enesekehtestamist suhtlemises kasutada? - Miks kardetakse ennast kehtestada?

Rohkem

Praks 1

Praks 1 Biomeetria praks 6 Illustreeritud (mittetäielik) tööjuhend Eeltöö 1. Avage MS Excel is ankeedivastuseid sisaldav andmestik, 2. lisage uus tööleht, nimetage see ümber leheküljeks Praks6 ja 3. kopeerige

Rohkem

(geomeetria3_0000.eps)

(geomeetria3_0000.eps) Analüütilise geomeetria praktikum III L. Tuulmets Tartu 1980 3 4 Eessõna Käesolev analüütilise geomeetria praktikum on koostatud eeskätt TRÜ matemaatikateaduskonna vajadusi arvestades ning on mõeldud kasutamiseks

Rohkem

Microsoft Word - Sobitusahelate_projekteerimine.doc

Microsoft Word - Sobitusahelate_projekteerimine.doc Sobitusahelate projekteerimine Vaatleme 3 erinevat meetodit: koondparameetitega elementidel sobitamine häälestusribaga sobitamine veerandlainelõiguga sobitamine Sobitust võib vaadelda koormustakistuse

Rohkem

Microsoft Word - A-mf-7_Pidev_vorr.doc

Microsoft Word - A-mf-7_Pidev_vorr.doc 7. PIDEVUE VÕRRAND, LIANDITE DIFUIOON 7.1. Põhivalemi tuletamine Pidevuse võrrand kirjeldab liikuva vedeliku- või gaasimassi jäävust ruumielementi sisseja väljavoolava massi erinevus väljendub ruumiühikus

Rohkem

VL1_praks2_2009s

VL1_praks2_2009s Biomeetria praks 2 Illustreeritud (mittetäielik) tööjuhend Eeltöö 1. Avage MS Excel is oma kursuse ankeedivastuseid sisaldav andmestik (see, mida 1. praktikumiski analüüsisite), 2. nimetage Sheet3 ümber

Rohkem

VL1_praks6_2010k

VL1_praks6_2010k Biomeetria praks 6 Illustreeritud (mittetäielik) tööjuhend Eeltöö 1. Avage MS Excel is oma kursuse ankeedivastuseid sisaldav andmestik, 2. lisage uus tööleht (Insert / Lisa -> Worksheet / Tööleht), nimetage

Rohkem

Lisa I_Müra modelleerimine

Lisa I_Müra modelleerimine LISA I MÜRA MODELLEERIMINE Lähteandmed ja metoodika Lähteandmetena kasutatakse AS K-Projekt poolt koostatud võimalikke eskiislahendusi (trassivariandid A ja B) ning liiklusprognoosi aastaks 2025. Kuna

Rohkem

Microsoft Word - loeng8.doc

Microsoft Word - loeng8.doc Struktuurivõrrandite mudelid 16. detsember Struktuurivõrrandite mudelid piirid ja piiritagused alad Eeldatud jaotustest uuritavate tunnuste jaotus mtjus ML ja GLS hinnangute omadused asümptootiliselt efektiivne

Rohkem

ET TOIMIVUSDEKLARATSIOON vastavalt järgneva määruse (EL) Nr. 305/2011 lisale III: lisale III Elektritööriistadega kasutatavad Hilti kinnitid X-P 20 B3

ET TOIMIVUSDEKLARATSIOON vastavalt järgneva määruse (EL) Nr. 305/2011 lisale III: lisale III Elektritööriistadega kasutatavad Hilti kinnitid X-P 20 B3 ET TOIMIVUSDEKLARATSIOON vastavalt järgneva määruse (EL) Nr. 305/2011 lisale III: lisale III Elektritööriistadega kasutatavad Hilti kinnitid X-P 20 B3, X-P 24 B3, X-P 20 G3 ja X-P 24 G3, mis on mõeldud

Rohkem

TARTU ÜLIKOOL MATEMAATIKA-INFORMAATIKATEADUSKOND MATEMAATILISE STATISTIKA INSTITUUT Kristi Läll Mitmemõõtmeline analüüs peptiidide käitumise uurimisek

TARTU ÜLIKOOL MATEMAATIKA-INFORMAATIKATEADUSKOND MATEMAATILISE STATISTIKA INSTITUUT Kristi Läll Mitmemõõtmeline analüüs peptiidide käitumise uurimisek TARTU ÜLIKOOL MATEMAATIKA-INFORMAATIKATEADUSKOND MATEMAATILISE STATISTIKA INSTITUUT Kristi Läll Mitmemõõtmeline analüüs peptiidide käitumise uurimiseks Magistritöö Juhendajad: Mare Vähi, Anne Selart TARTU

Rohkem

Aili_A-mf-4_adiab.doc

Aili_A-mf-4_adiab.doc 4. ADIABAAILINE ROSESS 4.. emperatuuri adiabaatiline radient ermodünaamilisi protsesse, mis toimuvad soojusvahetuseta ümbritseva esonnaa, nimetatase adiabaatilistes. emperatuuri adiabaatilise radiendi

Rohkem

loeng2

loeng2 Automaadid, keeled, translaatorid Kompilaatori struktuur Leksiline analüüs Regulaaravaldised Leksiline analüüs Süntaks analüüs Semantiline analüüs Analüüs Masinkoodi genereerimine Teisendamine (opt, registrid)

Rohkem

Füüsika

Füüsika Füüsika Elektrostaatika Elektriväli dielektrikus Dielektrikud ja elektrijuhid Aine koosneb aatomitest, aatomid aga negatiivselt ja positiivselt laetud osakestest. Positiivne tuum on ümbritsetud negatiivse

Rohkem

Võistlusülesanne Vastutuulelaev Finaal

Võistlusülesanne Vastutuulelaev Finaal Võistlusülesanne Vastutuulelaev Finaal CADrina 2016 võistlusülesannete näol on tegemist tekst-pilt ülesannetega, milliste lahendamiseks ei piisa ainult jooniste ülevaatamisest, vaid lisaks piltidele tuleb

Rohkem

Microsoft PowerPoint - loeng2.pptx

Microsoft PowerPoint - loeng2.pptx Kirjeldavad statistikud ja graafikud pidevatele tunnustele Krista Fischer Pidevad tunnused ja nende kirjeldamine Pidevaid (tihti ka diskreetseid) tunnuseid iseloomustatakse tavaliselt kirjeldavate statistikute

Rohkem

raamat5_2013.pdf

raamat5_2013.pdf Peatükk 5 Prognoosiintervall ja Usaldusintervall 5.1 Prognoosiintervall Unustame hetkeks populatsiooni parameetrite hindamise ja pöördume tagasi üksikvaatluste juurde. On raske ennustada, milline on huvipakkuva

Rohkem

lcs05-l3.dvi

lcs05-l3.dvi LAUSELOOGIKA: LOOMULIK TULETUS Loomuliku tuletuse süsteemid on liik tõestussüsteeme nagu Hilberti süsteemidki. Neile on omane, et igal konnektiivil on oma sissetoomise (introduction) ja väljaviimise (elimination)

Rohkem

Kuidas ärgitada loovust?

Kuidas ärgitada loovust? Harjumaa ettevõtluspäev äriideed : elluviimine : edulood : turundus : eksport Äriideede genereerimine Harald Lepisk OPPORTUNITYISNOWHERE Ideed on nagu lapsed Kas tead kedagi, kelle vastsündinud laps on

Rohkem

6

6 TALLINNA ÕISMÄE GÜMNAASIUMI ÕPPESUUNDADE KIRJELDUSED JA NENDE TUNNIJAOTUSPLAAN GÜMNAASIUMIS Õppesuundade kirjeldused Kool on valikkursustest kujundanud õppesuunad, võimaldades õppe kahes õppesuunas. Gümnaasiumi

Rohkem

Tartu Kutsehariduskeskus Teksti sisestamine Suurem osa andmetest saab sisestatud klaviatuuril leiduvate sümbolite abil - tähed, numbrid, kirjavahemärg

Tartu Kutsehariduskeskus Teksti sisestamine Suurem osa andmetest saab sisestatud klaviatuuril leiduvate sümbolite abil - tähed, numbrid, kirjavahemärg Teksti sisestamine Suurem osa andmetest saab sisestatud klaviatuuril leiduvate sümbolite abil - tähed, numbrid, kirjavahemärgid jne. Suurte tähtede sisestamiseks hoia all Shift-klahvi. Kolmandate märkide

Rohkem

Microsoft PowerPoint - Vork.ppt

Microsoft PowerPoint - Vork.ppt AS Tallinna Vee väljakutsed ilmastikuga viimasel kümnendil 23/03/2011 Tallinna Vesi Eesti suurim vee-ettevõte teenindab üle 430 000 elaniku Tallinnas ja lähiümbruses ca 22 000 klienti (sh Maardu) Ca 290

Rohkem

my_lauluema

my_lauluema Lauluema Lehiste toomisel A. Annisti tekst rahvaluule õhjal Ester Mägi (1983) Soran Alt q = 144 Oh se da ke na ke va de ta, ae ga i lust üü ri kes ta! üü ri kes ta! 3 Ju ba on leh tis lei na kas ke, hal

Rohkem

I Generaatori mõiste (Java) 1. Variantide läbivaatamine Generaator (ehk generaator-klass) on klass, milles leidub (vähemalt) isendimeetod next(). Kons

I Generaatori mõiste (Java) 1. Variantide läbivaatamine Generaator (ehk generaator-klass) on klass, milles leidub (vähemalt) isendimeetod next(). Kons I Generaatori mõiste (Java) 1. Variantide läbivaatamine Generaator (ehk generaator-klass) on klass, milles leidub (vähemalt) isendimeetod next(). Konstruktorile antakse andmed, mis iseloomustavad mingit

Rohkem

Elisa Ring Elisa Ringi mobiilirakendus Versioon

Elisa Ring Elisa Ringi mobiilirakendus Versioon Elisa Ring Elisa Ringi mobiilirakendus Versioon 1.0.85 15.01.2019 1 Elisa Ring... 1 1. Ülevaade... 3 1.1. Kirjeldus... 3 1.2. Tehnilised tingimused... 3 1.3. Kasutuselevõtt ja sisselogimine... 3 2. Rakenduse

Rohkem

6

6 TALLINNA ÕISMÄE GÜMNAASIUMI ÕPPESUUNDADE KIRJELDUSED JA NENDE TUNNIJAOTUSPLAAN GÜMNAASIUMIS Õppesuundade kirjeldused Kool on valikkursustest kujundanud õppesuunad, võimaldades õppe kolmes õppesuunas. Gümnaasiumi

Rohkem

Abiarstide tagasiside 2016 Küsimustikule vastas 137 tudengit, kellest 81 (60%) olid V kursuse ning 56 (40%) VI kursuse tudengid. Abiarstina olid vasta

Abiarstide tagasiside 2016 Küsimustikule vastas 137 tudengit, kellest 81 (60%) olid V kursuse ning 56 (40%) VI kursuse tudengid. Abiarstina olid vasta Abiarstide tagasiside 2016 Küsimustikule vastas 137 tudengit, kellest 81 (60%) olid V kursuse ning 56 (40%) VI kursuse tudengid. Abiarstina olid vastanutest töötanud 87 tudengit ehk 64%, kellest 79 (91%)

Rohkem

Sularahateenuse hinnastamise põhimõtted SRK 3 12_

Sularahateenuse hinnastamise põhimõtted SRK 3 12_ Koostas: E. Vinni (sularahateenuste müügijuht) Kinnitas: P. Sarapuu (juhatuse esimees) Vers.: 2 Lk: 1/7 Sularahateenuse hinnastamise põhimõtted Koostas: E. Vinni (sularahateenuste müügijuht) Kinnitas:

Rohkem