elastsus_opetus_2015_ptk5.dvi

Suurus: px
Alustada lehe näitamist:

Download "elastsus_opetus_2015_ptk5.dvi"

Väljavõte

1 Peatükk 5 Elastsusteooria tasandülesanne 5.. Tasandülesande mõiste 5-5. Tasandülesande mõiste Selleks, et iseloomustada pingust või deformatsiooni elastse keha punktis kasutatakse peapinge ja peadeformatsiooni mõistet. Pinguse puhul eristatatkse järgmist kolme juhtu: ruumpingus kõik kolm peapinget on nullist erinevad; tasandpingus kaks peapinget on nullist erinevad; joonpingus vaid üks peapinge on nullist erinev. Analoogiliselt, st. läbi peadeformatsioonide, defineeritakse ruum-, tasand- ja joondeformatsiooni. Üldjuhul võib nii pinguse kui deformatsiooni iseloom olla keha erinevates punktides erinev. Kui igas keha punktis on pingus (deformatsioon) sama iseloomuga siis öeldakse, et kehas on ühtlane pingus (deformatsioon). Elastsusteooria ülesannet nimetatakse tasandülesandeks (ehk tasapinnaliseks ülesandeks) kui deformatsioon või pinge on kogu keha ulatuses tasapinnaline.

2 5.. Tasanddeformatsioon Tasanddeformatsioon Vaadeldaval juhul on kõigis keha punktides deformatsioon tasapinnaline, st. üks peadeformatsioonidest on null. Tasanddeformatsioon saab tekkida kui siirded u = u(,), v = v(,), w =. (5.) Vastavalt Cauch seostele (4.) ε = u, ε = v, ε z = w z =, γ = u + v, γ z = v z + w =, γ z = u z + w =. (5.) Selline deformatsiooniseisund tekib pikas kehas, millele mõjub keha pinnaga (z-teljega) ristuv koormus. Näiteks: pikk tugisein;(metroo)tunnel; pikk radiaalselt surutud võll; pika plaadi silindriline paine (NB! Saint Venant i printsiip). pildid 5.. Tasanddeformatsioon 5-4 Pingete leidmiseks kasutame üldistatud Hooke i seadust nn. pöördkujul (4.4): σ = λθ+µε = (λ+µ)ε +λε, τ = µγ, σ = λθ+µε = λε +(λ+µ)ε, τ z = µγ z =, (5.3) σ z = λθ+µε z = λ(ε +ε ), τ z = µγ z =. Teisest küljest, arvestades Hooke i seadust kujul (4.3), peab ε z = E [σ z ν(σ +σ )] =, kust saame σ z = ν(σ +σ ). Kuna siirded u ja v sõltuvad vaid koordinaatidest ja, siis avaldiste (5.) ja (5.3) põhjal ka pinge σ z sõltub vaid koordinaatidest ja.

3 5.. Tasanddeformatsioon 5-5 Tasakaaluvõrrandid (4.): σ + τ + τ z +X =, z τ + σ + τ z +Y =, z τ z + τ z + σ z +Z =. z Arvestades ülesande sisu jääb järgi kaks võrrandit σ + τ +X =, τ + σ (5.4) +Y =, kusjuures ka mahujõud Z =. 5.. Tasanddeformatsioon 5-6 Rajatingimustest (4.5) p ν = σ l+τ m+τ z n, p ν = τ l+σ m+τ z n, p νz = τ z l+τ z m+σ z n jääb samuti alles esimest võrrandit { pν = σ l+τ m, p ν = τ l+σ m; (5.5) keha külgpind on paralleelne z-tejega ning seetõttu normaali suunakoosinus n = ; p νz = kuna muidu poleks meil tasanddeformatsiooni.

4 5.. Tasanddeformatsioon 5-7 Pidevusvõrranditest deformatsioonides (4.6) ε + ε = γ, ε z + ε z = γ z z, ε z + ε z = γ z z, ( γz + γ z γ ) z ( γ z + γ z γ ) z ( γz z + γ z γ ) z jääb alles vaid esimene = ε z, = ε z, = ε z ε + ε = γ. (5.6) 5.3. Tasandpingus Tasandpingus Vaatleme olukorda, kus kõigis keha punktides üks peapingetest on null. Sellisel juhul saame valida Descartes i ristkoordinaadid nii, et σ = σ (,), σ = σ (,), τ = τ (,), σ z = τ z = τ z =. (5.7) Selline pingus tekib näiteks õhukeses plaadis, millele mõjub servades rakendatud koormus, mis on risti z-teljega. Üldistatud Hooke i seadusest (4.4) saame ε = E [σ ν(σ +σ z )] = σ νσ, γ = τ E G, ε = E [σ ν(σ z +σ )] = σ νσ, γ z = τ z E G =, ε z = E [σ z ν(σ +σ )] = ν σ +σ E, γ z = τ z G =. (5.8) Tasakaaluvõrrandid on tasandpinguse korral samad kui olid tasanddeformatsiooni korral, st. esitatud kujul (5.4). joonis

5 5.4. Tasandülesande lahendamine pingetes Tasandülesande lahendamine pingetes Väga sageli lahendatakse elastsusteooria ülesanded pingetes, sest sellel meetodil on võrreldes siiretes lahendamisega mõned eelised: sageli ongi ülesande lahendina vaja leida vaid pingeid, siirded on teisejärgulise tähtsusega ning neid polegi vaja leida; üldjuhul on siirete avaldised võrreldes pingete avaldisega tunduvalt keerukamad. Tundmatud: pingetensori komponendid σ,σ ja τ Tasandülesande lahendamine pingetes 5 - Esmalt peame pidevustingimuse (5.6) ε + ε = γ. avaldama pingetes. Selleks kasutame üldistatud Hooke i seadust kujul(5.8) kust leiame vajalikud osatuletised läbi pingete: ε = ( ) σ σ E ν, ε = ( ) σ σ E ν, (5.9) γ = τ G = (+ν) τ E. Seega saab pidevustingimus kuju ( ) ( σ σ ) σ σ ν + ν = (+ν) τ. (5.)

6 5.4. Tasandülesande lahendamine pingetes 5 - Viimasest avaldisest saab tasakaaluvõrrandite (5.4) abil ellimineerida nihkepinge. Selleks diferentseerime (5.4) järgi ja (5.4) järgi τ = σ X, τ = σ Y (5.). Eeldades, et mahujõu on konstantsed, saame viimaste liitmise tulemusena τ = σ σ. (5.) Asendades viimase tulemuse pidevustingimusse (5.) saame peale teisendusi (σ +σ ) + (σ +σ ) =. (5.3) Kasutades Laplace i operaatorit saame väljendada tasandülesande pidevustingimuse pingetes kujul (σ +σ ) =. (5.4) 5.4. Tasandülesande lahendamine pingetes 5 - Tasandülesande lahendamine pingetes lihtsustub oluliselt kui tuua sisse Air pingefunktsioon ϕ(, ), mis on seotud pingekomponentidega järgmisel kujul: σ = ϕ ; σ = ϕ ; τ = ϕ X Y, (5.5) kus X ja Y on konstantsed mahujõud. Alternatiivne võimalus siduda pingekomponendid ja pingefunktsioon: σ = ϕ X; σ = ϕ Y; τ = ϕ. (5.6) Nii (5.5) kui (5.6) korral on tasakaaluvõrrandid (5.4) automaatselt rahuldatud. Pannes selliselt defineeritud pingekomponendid pidevustingimusse (5.4) saame biharmoonilise võrrandi ( ϕ + ϕ ) = ( ϕ ) =. (5.7)

7 5.4. Tasandülesande lahendamine pingetes 5-3 Lahti kirjutatult saab viimane kuju 4 ϕ + 4 ϕ ϕ =. (5.8) 4 Funktsiooni, mis rahuldab biharmoonilist võrrandit (5.7) või (5.8) nimetatakse biharmooniliseks funktsiooniks. Kuna tasakaaluvõrrandid on antud juhul automaatselt rahuldatud, siis taandub tasandülesande lahendamine pingetes neljandat järku osatuletistega diferentsiaalvõrrandi lahendamisele. Siinjuures tuleb loomulikult arvesse võtta pingetes antud ääretingimusi. Peale pingefunktsiooni leidmist määratakse pingetensori komponendid (näiteks avaldistest (5.5)). Seejärel saab üldistatud Hooke i seaduse abil leida deformatsioonikomponendid ja Cauch seostest siirdekomponendid. Tegelikult on pingefunktsiooni leidmine mitmel juhul suhteliselt lihtne. Vastavat meetodit võib nimetada poolvastupidiseks meetodiks. Selle põhjal antakse pingefunktsioon ette kas polünoomina või trigonomeetrilise reana, mis sisaldavad määramata konstante. Viimased määratakse ülesande lahendamise käigus ääretingimuste ja biharmoonilise võrrandi abil Biharmoonilise võrrandi lahendamine polünoomides Biharmoonilise võrrandi lahendamine polünoomides Kui väljendada Air funktsioon polünoomina ϕ = ( a + ( a b 3 + c 3 + d 3 +b + c ) + ( a b c 4 + d e ) ) +... (5.9) saab konstrueerida terve rea tasandülesande lahendusi. Vaadeldav lähenemisviis on rakendatav kui uuritakse ristkülikulisi plaate või talasid. Mahujõud, k.a. keha kaal, hülgame. Käesolevas alajaotuses vaatleme talasid, mille pikkus on l, kõrgus c ja laius. Tala teljeks on -telg ja telg on suunatud alla. Kuna joonis lineaarses elastsusteoorias kehtib superpositsiooni printsiip, siis vaatleme algul polünoome kuni 5. astmeni eraldi. Järgmises alajaotuses konstrueerime saadud tulemuste abil erinevaid lahendeid.

8 5.5. Biharmoonilise võrrandi lahendamine polünoomides 5-5 A) Ruutpolünoom ϕ = a +b + c. (5.) Sellise valiku puhul on biharmooniline võrrand (5.8) automaatselt rahuldatud. Mahujõude hülgamise puhul saame avaldistest (5.5) pingekomponendid kujul σ = c ; σ = a ; τ = b. (5.) Selline pingeseisund tähendab a >, b > ja c > puhul ühtlast tõmmet kahes ristuvas sihis koos ühtlase nihkega. Vastavad rajatingimused on esitatud joonisel 5.. Võttes osa polünoomi koefitsente võrdseks nulliga, saab rajatingimusi varieerida. σ = a τ = b τ = b τ = b σ = c σ = c τ = b σ = a Joonis 5.: Ruutpolünoomile vastavad rajatingimused Biharmoonilise võrrandi lahendamine polünoomides 5-6 B) Kuuppolünoom ϕ 3 = a b 3 + c 3 + d (5.) Ka antud juhul on biharmooniline võrrand (5.8) automaatselt rahuldatud. Pingete avaldiste (5.5) põhjal aga σ = c 3 +d 3 ; σ = a 3 +b 3 ; τ = b 3 c 3. (5.3) σ = d 3 c σ = d 3 c c c l σ = d 3 c σ = d 3 c Joonis 5.: Kuuppolünoomile vastavad rajatingimused: d 3, a 3 = b 3 = c 3 =. Valides vaid d 3 saame puhtale paindele vastava pingeseisundi. Rajatingimused, mis vastavad juhule d 3 > on esitatud joonisel 5.. Valides vaid b 3 saame pingeseisundi, mille korral pindadel = ±c mõjuvad pinged σ = ±b 3 c ja τ = b 3 ning pinnal = l pinge τ = b 3 l. Juhu b 3 > jaoks on vastavad rajatingimused esitatud joonisel 5.3.

9 5.5. Biharmoonilise võrrandi lahendamine polünoomides 5-7 c c l σ = b 3 c σ = b 3 c c c l τ = b 3 l τ = b 3 l τ = b 3 l Joonis 5.3: Kuuppolünoomile vastavad rajatingimused: b 3, a 3 = c 3 = d 3 =. Muud võimalused: Vaid c 3... Vaid a 3... Jne Biharmoonilise võrrandi lahendamine polünoomides 5-8 Teist ja kolmandat järku polünoomide puhul polnud vaja esitada täiendavaid kitsendusi polünoomide koefitsentidele, sest biharmooniline võrrand oli automaatselt rahuldatud. Kõrgemat järku polünoomide puhul pole asi aga enam nii lihtne. C) Neljandat järku polünoom ϕ 4 = a b c 4 + d e (5.4) Nüüd on biharmooniline võrrand (5.8) rahuldatud vaid juhul kui e 4 = (c 4 +a 4 ) (5.5) ning pingekomponendid (5.5) saavad kuju σ = c 4 +d 4 (c 4 +a 4 ) ; σ = a 4 +b 4 +c 4 ; τ = b 4 c 4 d 4. (5.6) Kuna koefitsentide a 4,...,d 4 valik on vaba, siis on (5.6) abil võimalik kirjeldada mitmesuguseid rajatingimusi.

10 5.5. Biharmoonilise võrrandi lahendamine polünoomides 5-9 Näiteks kui vaid d 4 on nullist erinev polünoomi koefitsent, siis σ = d 4 ; σ = ; τ = d 4. (5.7) c c l σ = d 4 lc σ = d 4 lc τ =,5d 4 c c c l τ =,5d 4 c τ =,5d 4 c τ =,5d 4 c Joonis 5.4: Neljandat järku polünoomile vastavad rajatingimused juhul kui d 4 > ja a 4 = b 4 = c 4 =. Juhule d 4 > vastavad rajatingimused τ = d 4 c, kui = ±c; τ = d 4, kui = ; τ = d 4, σ = d 4 l, kui = l; on kujutatud joonisel 5.4. (5.8) 5.5. Biharmoonilise võrrandi lahendamine polünoomides 5 - Kui vaid c 4 > oleks nullist erinev polünoomi koefitsent, siis saaksime avaldistest (5.6) Jne., jne. σ = c 4 c 4 ; σ = c 4 ; τ = c 4. (5.9) D) Viiendat järku polünoom ϕ 5 = a b c d e f (5.3) Nüüd on biharmooniline võrrand (5.8) rahuldatud kui e 5 = (c 5 +3a 5 ) ja f 5 = 3 (b 5 +d 5 ). (5.3) Pingekomponendid σ = ϕ 5 =... σ = ϕ 5 =... τ = ϕ 5 =... (5.3)

11 5.5. Biharmoonilise võrrandi lahendamine polünoomides 5 - Valides vaid d 5 > nullist erinevaks polünoomikoefitsendiks, saame pingejaotuse σ = d 5 ( 3 3 ), σ = 3 d 5 3, τ = d 5. (5.33) Viimasele vastavad rajatingimused = ±c, σ = ± 3 d 5c 3, τ = d 5 c =, σ = d 5 3 3, τ =, = l, σ = d 5 (l 3 3 ), τ = d 5 l. (5.34) Kuna biharmooniline võrrand (5.8) on lineaarne diferentsiaalvõrrand, siis on tema lahendiks ka suvaline lahendite superpositsioon. Seega, liites eespool leitud elementaarlahendeid, saame leida meid huvitava probleemi lahendi Biharmoonilise võrrandi lahendamine polünoomides 5 - Tala pinnal mõjuvate pingete (pindjõudude) peavektori ja peamomendi leidmine Vaatleme tala, mille pikkus on l, kõrgus c ja laius. Eeldame, et tala kontuuril mõjuvad normaal- ja nihkepinged on positiivsed. Valime taandamistsentriks koordinaatide alguse. Peavektori projektsioonid koordinaattelgedel ja : R = R (σ ) =l + R (σ ) = + R (τ ) =c + R (τ ) = c = = c c σ =l d c c σ = d + l τ =c d l τ = c d; R = R (σ ) =c + R (σ ) = c + R (τ ) = + R (τ ) =l = = l σ =c d l σ = c d c c τ = d + c c τ =l d. (5.35) (5.36)

12 5.5. Biharmoonilise võrrandi lahendamine polünoomides 5-3 Peamoment koordinaatide alguse suhtes M O = M O (σ ) = + M O (σ ) =l + M O (σ ) =c + M O (σ ) = c + + M O (τ ) =c + M O (τ ) = c + M O (τ ) =l = = + c c l l σ = d σ =c d τ =c cd c c l l σ =l d+ σ = c d τ = c cd+ c c τ =l ld. (5.37) Kuna telg on suunatud alla, siis on positiivne moment päripäeva Konsooli paine Konsooli paine Vaatleme kitsa ristkülikulise ristlõikega konsooli, mille vabas otsas ( = ) on rakendatud jõud P, mida võib vaadelda kui otspinnal mõjuvate nihkepingete peavektorit (joonis 5.5). Konsooli pikkus on l, kõrgus c ja laius. Konsooli pealmine ja alumine pind on pingevabad ja ots = l jäigalt kinnitatud. l c c P Joonis 5.5: Kitsa ristkülikulise ristlõikega konsool; pikkus l, kõrgus c ja laius.

13 5.6. Konsooli paine 5-5 Sellist olukorda saab vaadelda kui superpositsiooni puhtast nihkest (alajaotus 5.5 A valemid (5.) a = c = ja b ) ja valemitega (5.7) esitatud juhust (alajaotus 5.5 C a 4 = b 4 = c 4 = e 4 = ja d 4 ). Saame σ = d 4, σ =, τ = b d 4 = τ. (5.38) Rajatingimused τ =±c = d 4 = b c, (5.39) Fi = = P = c c τ d = c c ( b b ) d b c = 3P 4c. (5.4) Pannes nüüd konstandid b ja d 4 valemitest (5.39) ja (5.4) pingete avaldisse (5.38) saame σ = 3P c 3, σ =, τ = 3P ) (. (5.4) 4c c 5.6. Konsooli paine 5-6 Arvestades, et inertsimoment I I z = c 3 /3, siis σ = P I, σ =, τ = P I (c ). (5.4) Lahend on täpne Saint-Venanti printsiibi mõttes, st., 5.5 C puhul on tala otsas nihkepinged paraboolse jaotusega. Leiame nüüd siirdekomponendid u ja v. Lähtume Hooke i seadusest ja Chauch seostest, mille põhjal ε = u = σ E = P EI, ε = v = νσ E = νp EI, γ = u + v = τ G = P GI (c ). Integreerime (5.43) koordinaadi järgi ja (5.43) koordinaadi järgi: (5.43) u = P EI +f(), v = νp EI +f (), (5.44) kus funktsioonid f() ja f () on integreerimiskonstantide analoogid.

14 5.6. Konsooli paine 5-7 Pannes (5.44) valemisse (5.43) 3 saame P EI + df() d Viimane on esitatav kujul + νp EI + df () d = P GI (c ). (5.45) F()+G() = K, (5.46) kus F() = df () d P EI, G() = df() ( νp d + EI P ), K = P GI GI c. (5.47) KunaF()+G() = K = const.,siispeavadkaf()jag()olemakonstantsed. Tähistades F() = d ja G() = e saame valemitest (5.46) tingimuse d+e = P GI c (5.48) ja diferentsiaalvõrrandid df() d = ( P GI νp EI ) +e, df () d = P EI +d. (5.49) 5.6. Konsooli paine 5-8 Viimaste integreerimisel saame ( P f() = 6GI νp ) 3 +e +g, 6EI f () = P 6EI 3 +d+h. (5.5) Seega saavad siirete avaldised (5.44) kuju u = P ( P EI + 6GI νp ) 3 +e+g, v = νp 6EI EI + P 6EI 3 +d+h. (5.5) Konstandid d, e, g ja h määratakse tingimusest (5.48) ja kolmest rajatingimustest siiretele. Olgu punkt A tala ristlõike = l kese. Jäiga kinnituse tõttu peab see punkt olema fikseeritud tema siirded on nullid ja ristlõige = l ei saa pöörduda ümber punkti A. Seega kui = l ja =, siis u = v = ning g = ja h = Pl3 6EI dl. (5.5) Võttes valemis (5.5) =, saame konsooli kõverdunud telje võrrandi (enne

15 5.6. Konsooli paine 5-9 deformatsiooni on teljeks -telg, st. sirge = ): v = = P 6EI 3 Pl3 d(l ). (5.53) 6EI Konstandi d määramiseks kasutame kolmandat rajatingimust, mis ei luba vaadeldaval ristlõikel pöörelda ümber punkti A. Seda tingimust võib ette anda mitmel viisil. Vaatleme kahte: a) tala telje element on punktis A fikseeritud, st., v = ; (5.54) = l = b) tala ristlõike vertikaalne element on punktis A fikseeritud, st., u =. (5.55) = l = Juhul a) saame avaldiste (5.54), (5.53) ja (5.48) põhjal d = Pl EI ja e = Pl EI Pc GI. (5.56) 5.6. Konsooli paine 5-3 Joonis 5.6: Rajatingimused otsas = l. Seega saavad siirdekomponentide avaldised (5.5) ja kõverdunud telje võrrand (5.53) kuju u = P EI νp 6EI 3 + P 6GI 3 + v = νp EI + P 6EI 3 Pl Pl3 + EI 3EI, v = = P 6EI 3 Pl Pl3 + EI 3EI. ( ) Pl EI Pc, GI (5.57)

16 5.6. Konsooli paine 5-3 Võrrand (5.57) 3 annab konsooli vaba otsa = läbipaindeks Pl 3 /3EI, mis ühtib tugevusõpetusest tuntud tulemustega. Juhul b) saame konstantidele väärtused e = Pl ja d = Pl EI EI Pc GI ning siirdekomponentide ja tala kõverdunud telje jaoks avaldised u = P EI νp 6EI 3 + P 6GI 3 + Pl EI, v = νp EI + P 6EI 3 ( Pl EI + Pc GI v = = P 6EI 3 Pl Pl3 + EI 3EI + Pc GI (l ). ) + Pc l GI + Pl3 3EI, Seega saame võrrandi (5.59) 3 kasutamise puhul tala teljele (5.58) (5.59) Pc 3P (l ) = (l ) (5.6) GI 4Gc võrra suuremad läbipainded kui võrrandi (5.57) 3 puhul. Põhjus on selles, et rajatingimused (5.54) keelavad tala telje pöörded kuid lubavad otspinna pöördeid 5.6. Konsooli paine 5-3 punktis A (vt. joonis 5.6 a). Rajatingimused (5.55) keelavad aga tala otspinna pöörded kuid lubavad telje pöördeid (vt. joonis 5.6 b). Mõlemal juhul toimuvad pöörded ühe ja sama nurga α võrra kuigi pöörduvad erinevad elemendid: α tanα = Pc GI = 3P 4cG kui b =, 3P 4cbG kui b. (5.6) Tegelikult jääb aga kogu otspind = l paigale ja õiget tulemust ei anna ei juht a) ega b) ning kinnituskoha läheduses ei vasta ka pingejaotus valemitega (5.4) antule. Avaldise (5.4) puhul tuleb rakendada Saint-Venant i printsiipi, st., et (5.4) annaks tõepärasema tulemuse, peame olema otsast = l piisavalt kaugel. Seega pikkade konsoolide puhul on tulemus täpsem, st. vastab enam tegelikkusele, kui lühikeste puhul.

17 5.6. Konsooli paine 5-33 Näited Joonistada:. tala kõverdunud telg (elastne joon) ja. ristlõigete = ;,5l;l deformeerunud kuju erinevate c, l ja P väärtuste jaoks mõlema ülalvaadeldud ääretingimuse korral. Tala materjal on teras, mille elastsuskonstant E = GPa ja ν =,3 ning tala laius b =, m. Järgnevateljoonisteltähistavadα telg jaα ots vastavaltkõverdunudteljejaotspinna numbriliselt leitud tõusunurka kraadidespunktis A. Nurk α teor, mis on leitud avaldisest tanα teor = 3P/(4cbG), vastab rajatingimuste a) korral kõverdunud otspinna tõusule ja rajatingimuste b) korral kõverdunud telje tõusule punktis A (võrdle joon. 5.6) Konsooli paine 5-34 Tala telje ja lõigete = [ ;,5l; l] deformeerunud kuju. ( b =.m; c =.m; l = m; P = 5 kn) Joonis 5.7: Rajatingimused a) sinine pidev joon; rajatingimused b) punane kriipsjoon.

18 5.6. Konsooli paine 5-35 Tala telje ja lõigete = [ ;,5l; l] deformeerunud kuju. ( b =.m; c =.m; l = m; P = 5 kn) a) α ots =.66.4 b) α telg = c) α =.66 teor. Joonis 5.8: Rajatingimused a) sinine pidev joon; rajatingimused b) punane kriipsjoon Konsooli paine 5-36 Tala telje ja lõigete = [ ;,5l; l] deformeerunud kuju. ( b =.m; c =.m; l = m; P = kn) Joonis 5.9: Rajatingimused a) sinine pidev joon; rajatingimused b) punane kriipsjoon.

19 5.6. Konsooli paine 5-37 Tala telje ja lõigete = [ ;,5l; l] deformeerunud kuju. ( b =.m; c =.m; l = m; P = kn) a) α ots = b) α telg = c) α =.533 teor Joonis 5.: Rajatingimused a) sinine pidev joon; rajatingimused b) punane kriipsjoon Konsooli paine 5-38 Tala telje ja lõigete = [ ;,5l; l] deformeerunud kuju. ( b =.m; c =.m; l =.5m; P = kn) Joonis 5.: Rajatingimused a) sinine pidev joon; rajatingimused b) punane kriipsjoon.

20 5.6. Konsooli paine 5-39 Tala telje ja lõigete = [ ;,5l; l] deformeerunud kuju. ( b =.m; c =.m; l =.5m; P = kn) a) α =.533 ots.6..4 b) α.8 telg = c) α teor = Joonis 5.: Rajatingimused a) sinine pidev joon; rajatingimused b) punane kriipsjoon Konsooli paine 5-4 Tala telje ja lõigete = [ ;,5l; l] deformeerunud kuju. ( b =.m; c =.4m; l = 3m; P = kn) Joonis 5.3: Rajatingimused a) sinine pidev joon; rajatingimused b) punane kriipsjoon.

21 5.6. Konsooli paine 5-4 Tala telje ja lõigete = [ ;,5l; l] deformeerunud kuju. ( b =.m; c =.4m; l = 3m; P = kn) a) α ots =.66. b) α telg = c) α =.66 teor Joonis 5.4: Rajatingimused a) sinine pidev joon; rajatingimused b) punane kriipsjoon Konsooli paine 5-4 Tala telje ja lõigete = [ ;,5l; l] deformeerunud kuju. ( b =.m; c =.8m; l = m; P = 5 kn) Joonis 5.5: Rajatingimused a) sinine pidev joon; rajatingimused b) punane kriipsjoon.

22 5.6. Konsooli paine 5-43 Tala telje ja lõigete = [ ;,5l; l] deformeerunud kuju. ( b =.m; c =.8m; l = m; P = 5 kn) a) α ots = b) α telg = c) α teor = Joonis 5.6: Rajatingimused a) sinine pidev joon; rajatingimused b) punane kriipsjoon Ühtlaselt koormatud tala paine Ühtlaselt koormatud tala paine Vaatleme kitsa ristkülikulise ristlõikega tala (joonis 5.7). Tala on otstes vabalt toetatud ja talle mõjub ühtlaselt jaotatud koormus intensiivsusega q. Joonisel on tugede asemel kujutatud juba toereaktsioonid. q c c ql l l ql Joonis 5.7: Ühtlaselt koormatud kitsas ristkülikulise ristlõikega tala; pikkus l, kõrgus c ja laius.

23 5.7. Ühtlaselt koormatud tala paine 5-45 Rajatingimused: a) külgpindadel = ±c τ =±c =, σ =+c =, σ = c = q; (5.6) b) otspindadel = ±l c c c c c c τ =±l d = ql, σ =±l d =, σ =±l d =, põikjõud tala otstes, pikijõud tala otstes, paindemoment tala otstes. (5.63) Rajatingimusi (5.6) ja (5.63) saab rahuldada kui kombineerida alajaotuses 5.5 leitud lahendeid. Lähtume lahendist (5.33) (lk. ) σ = d 5 ( 3 3 ), σ = 3 d 5 3, τ = d 5, millele vastavad rajatingimused on kujutatud joonisel Ühtlaselt koormatud tala paine 5-46 σ = d c 3 /3 5 σ = d c 3 /3 5 c c l σ = d c 3 /3 5 σ = d ( l c + c 3 /3) 5 σ = d (l c c 3 /3) 5 σ = d c 3 /3 5 τ = d lc 5 τ = d lc 5 τ = d lc 5 Joonis 5.8: Viiendat järku polünoomile vastavad rajatingimused d 5 ja a 5 = b 5 = c 5 = e 5 = f 5 = puhul. Et vabaneda tõmbepingetest küljel = c ja nihkepingetest külgedel = ±c lisame tõmbe σ = a lahendist (5.) ja pinged σ = b 3 ning τ = b 3 lahendist (5.3). Kokku saame σ = d 5 ( 3 3 ), σ = 3 d 5 3 +b 3 +a, (5.64) τ = d 5 b 3. Rajatingimustest (5.6) määrame a = q, b 3 = 3 4 q c, d 5 = 3 q 4c3. (5.65)

24 5.7. Ühtlaselt koormatud tala paine 5-47 Arvestades, et I = I z = c 3 /3 saame valemitest (5.64) ja (5.65) σ = q I ( 3 3 ), σ = q I ( 3 3 c + 3 c3 ), τ = q I (c ). (5.66) Leitud pingekomponendid rahuldavad lisaks rajatingimustele (5.6) ka (5.63). Et oleks rahuldatud ka (5.63) 3 lisame puhtale paindele vastavad pinged σ = d 3 ja σ = τ = lahendist (5.3). Rajatingimusest (5.63) 3 leiame d 3 = 3 4 q c ( b c ). (5.67) 5 Seega avaldub normaalpinge σ lõpuks kujul σ = q ( l ) + q ( I I 3 3 ) 5 c. (5.68) 5.7. Ühtlaselt koormatud tala paine 5-48 Avaldise (5.68) esimene liige vastab elementaarsele paindeteooriale ning teist saab vaadelda kui parandusliiget ja ta on väike võrreldes esimesega. Parandusliige on põhjustatud sellest, et elementaarteooria puhul eeldatakse, et σ, kuid (5.66) põhjal pole see nii. Lisaks on valemite (5.66) ja (5.68) põhjal selge, et σ ja σ avaldise parandusliige ei sõltu koordinaadist. Joonistel5.9ja5.onesitatudpingeteσ jaσ epüüridvõrdlusemõttessamas mõõtkavas. Sinine pidevjoon vastab σ puhul summaarsele pingele vastavalt valemile (5.68), punane kriipsjoon esitab nn. põhiliiget ja roheline punktiirjoon parandusliiget. Nendelt joonistelt selgub, et mida suurem on tala pikkuse ja kõrgusesuhel/c,sedatühisemonparandusliikmemõjujapingeσ maksimaalne väärtus võrreldes σ maksimaalse väärtusega.

25 5.7. Ühtlaselt koormatud tala paine c = 3 l = σ c = 3 l = c = 3 l = σ c = 3 l = σ σ Joonis 5.9: Pinged σ ja σ ühtlaselt koormatud talas vastavalt valemitele (5.66) ja (5.68). Tala laius on ja kõrgus c = 6. Ülemistel joonistel on tala pikkus l = ja alumistel joonistel l = 3. Pinge σ on esitatud tala keskel kohal =. Punane kriipsjoon vastab elementaarteooriast pärit põhiliikmele ja roheline punktiirjoon parandusliikmele Ühtlaselt koormatud tala paine 5-5 c = l = 5 c = l = σ σ c = l = 5 c = l = σ σ Joonis 5.: Pinged σ ja σ ühtlaselt koormatud talas vastavalt valemitele (5.66) ja (5.68). Tala laius on ja kõrgus c = 4. Ülemistel joonistel on tala pikkus l = ja alumistel joonistel l = 3. Pinge σ on esitatud tala keskel kohal =. Punane kriipsjoon vastab elementaarteooriast pärit põhiliikmele ja roheline punktiirjoon parandusliikmele.

26 5.7. Ühtlaselt koormatud tala paine 5-5 σ ja parandusliikme osatähtsus protsentides parandusiige σ l/c Joonis 5.: Pinge σ ja parandusliikme osatähtsus protsentides sõltuvana tala pikkuse ja kõrguse suhtest Ühtlaselt koormatud tala paine 5-5 Valemi (5.68) parandusliikme ja pinge σ osatähtsuse hindamiseks on joonisel 5. esitatud suhted ( q ma I c ) ma σ ja. ma σ ma σ Selle joonise põhjal on selge, et parandusliikme osatähtsus on alla 5 % juba siis kui suhe l/c >,5 ja pingete σ ja σ maksimaalsete väärtuste suhe on 5 % väiksem kui suhe l/c > 5,5. Avaldisega (5.68) esitatud pinged annavad otspindadel nulliga võrduva peavektori ja peamomendi. Lahend on täpne vaid juhul kui otspindadel = ±l mõjuks pindjõud t = ± 3 ( q 4c ) 5 c. (5.69) Saint-Venaint i printsiibi põhjal loetakse lahend täpseks punktides, mis on otstest = ±l kaugemal kui tala kõrgus, st. c, ka t = puhul.

27 5.7. Ühtlaselt koormatud tala paine 5-53 Tala punktide siirded u ja v leitakse analoogiliselt alajaotusele 5.6. Nüüd eeldatakse, et punktis = = on horisontaalsed siirded võrdsed nulliga ja vertikaalsed siirded võrdsed läbipaindega δ. Kokku saame, et u = q EI v = q EI q EI ) ( [(l ) ( 5 c +ν 3 3 c + )] 3 c3, { 4 c + [ (l 3 c3 +ν ) ]} 5 c [ l 4 5 c + (+ ] )c ν +δ. (5.7) Kuna (5.7) põhjal horisontaalsed siirded tala keskjoonel u = = νq E, (5.7) siis ei osutu keskjoon neutraalseks jooneks. Tala keskjoone punktide vertikaalne siire v = = δ q EI [ l 4 5 c + (+ ] )c ν. (5.7) 5.7. Ühtlaselt koormatud tala paine 5-54 Kuna tala otsad on vabalt toetatud, siis v =±l = ja δ = 5 ql 4 [ + c ( 4 4EI 5 l 5 + ν )]. (5.73) Avaldises (5.73) nurksulgude ees olev kordaja esitab elementaarteooriale vastavat läbipainet (eeldades, et tala ristlõiked jäävad deformatsioonil tasapinnalisteks). Teine liige nurksulgudes esitab parandust, st. arvestab põikjõu mõju läbipaindele. Diferentseerides(5.7) kaks korda saame keskjoone kõverust iseloomustava avaldise v = q [ l ( 4 +c = EI 5 + ν )]. (5.74) Ka selles avaldises vastab esimene liige elementaarteooria valemile ning on proportsionaalne paindemomendiga q(l )/. Kui soovitakse arvesse võtta ka omakaalu, tuleb lisada pinge σ = ρg(c ), (5.75) mis annab tala ülemisel pinnal = c pingeks σ = ρg(c) ja alumisel pinnal = c vastavalt σ =.

28 5.7. Ühtlaselt koormatud tala paine 5-55 Näide Tala pikkus l = m, kõrgus c =,8 m ja laius b =, m, koormus q = kn/m. Materjalid: Teras: ρ = 78 kg/m 3, E = GPa, ν =.3, omakaal 6,44 kn. Alumiinium: ρ = 6 kg/m 3, E = 7 GPa, ν =.35, omakaal,448 kn. Vask: ρ = 89 kg/m 3, E = GPa, ν =.3, omakaal 69,847 kn. Joonistada tala kõverdunud keskjoon vastavalt valemile (5.7) ja elementaarteooria valemile v = q [ ] (+l) 4 l(+l)3 + l3 (+l) (5.76) EI ning hinnata valemi (5.73) nn. parandusliikme osatähtsust sõltuvana tala kõrguse ja pikkuse suhtest. Parnes, Ramond. Solid mechanics in engineering. Wile, Chichester, Ühtlaselt koormatud tala paine teras v..5 vask alumiinium Joonis 5.: Vabalt toetatud tala telje siirded. Punane kriipsjoon vastab nn. elementaarteooriale ja sinine pidevjoon valemile (5.7).

29 5.7. Ühtlaselt koormatud tala paine 5-57 parandus võrreldes elementaarteooriaga protsentides tala kõrguse c ja pikkuse l suhe Joonis 5.3: Vabalt toetatud tala paine. Valemi (5.73) parandusliikme osatähtsus protsentides sõltuvana tala kõrguse ja pikkuse suhtest (vt. alajaotus 5.7 lk. 54) Hüdrostaatiliselt koormatud tugiseina arvutus Hüdrostaatiliselt koormatud tugiseina arvutus. Joonis 5.4: Hüdrostaatiliselt koormatud kolmurkse ristlõikega tugisein. β Vaatleme kolmurkse ristlõikega tugiseina, millele mõjub hüdrostaatiline surve (joon 5.4). Olgu vedeliku tihedus ρ, tugiseina kaldenurk β ja seina materjali erikaal γ. Seega on seinale mõjuvateks välisjõududeks vedelikust põhjustatud hüdrostaatiline surve p = ρg ja mahujõud Y = γ (seina erikaal). Hülgame seina ja vundamendi vahelised mõjud, st., vaatleme <.

30 5.8. Hüdrostaatiliselt koormatud tugiseina arvutus Sellistel eeldustel on tegu tasapinnalise ülesandega ja rajatingimused { pν = σ l+τ m, p ν = τ l+σ m. Vertikaalsel küljel = ja pinnanormaali suunakoosinused l = ning m =. Kuna sellele seinale mõjub hüdrostaatiline surve p, siis vastavalt rajatingimustele {ρg { = σ ( )+τ, σ = ρg, (5.77) = τ ( )+σ, τ =. Kaldküljel = tanβ, l = cosβ, m = cos(9 β) = sinβ. Kuna kaldkülg on koormusest vaba, siis saavad rajatingimused kuju { = σ cosβ +τ ( sinβ), = τ cosβ +σ ( sinβ), { σ = τ tanβ, τ = σ tanβ. (5.78) Lahendi leidmisel lähtume kuuppolünoomist (5.) ϕ 3 = a b 3 + c 3 + d Hüdrostaatiliselt koormatud tugiseina arvutus. 5-6 Vastavalt valemitele (5.5) avalduvad pingekomponendid kujul σ = c 3 +d 3 ; σ = a 3 +b 3 ; τ = b 3 c 3 γ. (5.79) Alternatiivsete valemite (5.6) kaudu aga kujul σ = c 3 +d 3 ; σ = a 3 +b 3 γ; τ = b 3 c 3. (5.8) Järgnevalt näeme, et mõlemal juhul saame pärast rajatingimuste(5.77) ja(5.78) rahuldamist sama tulemuse. Lähtume esiteks valemeist (5.79). Rajatingimused vertikaalküljel (5.77) annavad d 3 = ρg ja c 3 =. (5.8) Kaldküljel = tanβ ja rajatingimused (5.78) saavad kuju { c3 tanβ +b 3 tan β +d 3 +γtan β = a 3 tan β +b 3 tanβ +c 3 +γtanβ = Arvestades (5.8) saame viimastest avaldada a 3 = γ tanβ ρg tan 3 β, b 3 = ρg tan β (5.8) γ. (5.83)

31 5.8. Hüdrostaatiliselt koormatud tugiseina arvutus. 5-6 Sellega ongi neli tundmatut konstanti määratud ning pingete avaldised (5.79) saavad kuju σ = ρg; σ = (γ A) kus konstant tanβ +(A γ); τ = A, (5.84) A = ρg tan β. (5.85) Kui teha sama protseduur läbi alternatiivsete pingeavaldiste (5.8) jaoks, siis saame rajatingimustest (5.77) tulemuseks avaldised (5.8). Rajatingimused kaldküljel annavad aga valemeist (5.83) erineva tulemuse konstandi b 3 jaoks a 3 = γ tanβ ρg tan 3 β, b 3 = ρg tan β. (5.86) Pannesagaavaldistega(5.8)ja(5.86)esitatudkonstantidea 3,...,d 3 väärtused pingete avaldistesse (5.8) saame sama tulemuse, mis eelmiselgi juhul. Seega võime kokkuvõttes öelda, et vaadeldava ülesande korral on pinged tugiseinas leitavad valemite (5.84) abil Hüdrostaatiliselt koormatud tugiseina arvutus. 5-6 Valemi (5.84) põhjal vertikaalküljel σ = (A γ). Seega selleks, et vältida tõmbepingeid (σ > ) peab A < γ, kust saame kaldenurga jaoks kriitilise väärtuse ρg β = arctan γ. (5.87) Kuiβ > β,siisonvertikaalkülgsurutud.võttesveetiheduseksρ = kg/m 3 ja seina materjaliks betooni erikaaluga γ = 4g N/m 3 saame β = arctan /4 = 3,8. Erikaalu γ = g N/m 3 korral saame aga β = 35,. Vaatlemenüüdtugiseinalõiget =.Onselge,etselleslõikes tanβ. Vastavalt valemeile (5.84) on normaalpinge σ = ρg, st. konstantne. Teine normaalpinge, st. σ, muutub aga väärtusest σ = = (A γ) väärtuseni σ = = A. Nihkepinge τ = = τ τ = = A tanβ. Tugevusõpetuse kursuse raames saadud valemid, nn. -järku lahend, erineb saadust oluliselt pingete σ ja τ osas, kusjuures σ langeb kokku: σ = ; σ = σ τ = 3ρg ) (tanβ tan 3. (5.88) β epüürid

32 5.8. Hüdrostaatiliselt koormatud tugiseina arvutus Nihkepinge avaldise puhul on -järku teoorias lähtutud samadest eeldustest, mis talade paindel ja saadud paraboolne jaotus. Märkused: Vaadeldava ülesande lahendusele ei anna polünoomi järgu tõstmine mitte mingeid lisaliikmeid kõik kõrgemat järku liikmed peavad vaadeldavate rajatingimuste korral olema nullid. Käesoleva lahendi puhul pole arvestatud vundamendi mõju tugiseina alumisel osal on lubatud vabalt deformeeruda. Tegelikkuses sõltub aga suuremate väärtuste korral vertikaalne deformatsioon vundamendi jäikusest. Kui me sooviksime arvestada ka rajatingimusi tugiseina alumisel osal(seina ja vundamendi kinnituskohas), siis muutuks ülesanne tunduvalt keerukamaks ja teda poleks võimalik lahendada polünoomides. Võttes kasutusele kuuendat järku polünoomid, saab leida lahendi ristkülikulise tugiseina (vertikaalse konsooli) jaoks. Seda vaadeldakse järgmises alajaotuses Hüdrostaatiliselt koormatud vertikaalne konsool Hüdrostaatiliselt koormatud vertikaalne konsool c c l Joonis 5.5: Vertikaalsele konsoolile mõjuv hüdrostaatiline surve. Kui üldistada alajaotuses 5.5 esitatud lahendusmetoodikat ja vaadelda 6. järku polünoomi, siis saame leida pingejaotuse hüdrostaatiliselt koormatud vertikaalse konsooli jaoks 3 : 3 Vaadeldav lahend pärineb Timoshenko ja Goodier õpikust ning tegelikult pole ka siin arvesse võetud vundamendi mõju.

33 5.9. Hüdrostaatiliselt koormatud vertikaalne konsool 5-65 σ = ρg ( 3 +ρg 4c 3 ), σ 3 = ρg3 + ρg ( ) 4c 4c 3 4c 3 5 c, τ = 3ρg 8c 3 (c ) ρg 8c 3(c4 4 )+ ρg 4c c (c ). (5.89) Siin tähistab ρ vedeliku tihedust (kg/m 3 ) ja seega on koormuse intensiivsus sügavusel võrdne ρg, põikjõud ρg / ja paindemoment ρg 3 /6. σ ja τ avaldiste esimesed liikmed vastavad jällegi elementaarteooriale. Konsooli vabal otsal = on leitud lahendi põhjal normaalpinged nullid. Nihkepinged τ = ρg 8c 3(c4 4 )+ ρg 4c c (c ) (5.9) pole nullid, kuid on väikesed üle kogu pinna ning nende peavektor on ligikaudu null. See võimaldab lugeda väliskoormuse kohal = nulliks. Kuitahetaksearvessevõttakakonsoolimaterjaliomakaal,siistulebσ avaldisse lisada liige γ, kus γ on konsooli materjali erikaal. 5.. Tasapinnalised ülesanded polaarkoordinaatides Tasapinnalised ülesanded polaarkoordinaatides 5.. Tasakaaluvõrrandid ja Air pingefunktsioon ϑ dϑ τ rϑ σ r A C τ ϑr +dτ ϑr D σ r +dσ r σ ϑ +dσ ϑ τ rϑ +dτ rϑ B σ ϑ τ ϑr Joonis 5.6: Väikese elemendi ABCD tasakaal. DRK-s esitatud tasakaaluvõrrandite analoog saadakse kui vaadeldakse elemendi ABCD tasakaalu ja projekteeritakse tema külgedel mõjuvad summaarsed jõud

34 5... Tasakaaluvõrrandid ja Air pingefunktsioon 5-67 ja mahujõud ϑ ja r sihile. Minnes üle piirile dϑ ja dr saame σ r +f r =, r τ rϑ ϑ + σ r σ ϑ r r + r σ ϑ ϑ + τ rϑ r + τ rϑ r +f ϑ =. (5.9) Siin tähistavad f r ja f ϑ mahujõudude projektsioone radiaal ja tangentsiaal suunale (r ja ϑ kasvamise suunale). Ka siin saab mahujõudude puudumisel sisse tuua Air pingefunktsiooni ϕ = ϕ(ϑ,r), nii et σ r = r ϕ r + ϕ r ϑ, τ rϑ = r ϕ ϑ r ϕ r ϑ = r σ ϑ = ϕ ( r, ϕ r ϑ ). Nüüd Laplace i operaator ( ) ( = + = r + r r + ) r ϑ (5.9) (5.93) 5... Deformatsioonikomponendid polaarkoordinaatides 5-68 ja biharmooniline võrrand ( 4 ϕ = r + r r + ) ϕ =. (5.94) r ϑ Kui pingekomponendid ja seega ka ϕ sõltuvad vaid koordinaadist r, siis saab võrrandi (5.94) üldlahendi esitada kujul ϕ = Alnr+Br lnr+cr +D. (5.95) 5.. Deformatsioonikomponendid polaarkoordinaatides ε r = u r, ε ϑ = u r + v r ϑ, γ rϑ = u r ϑ + v r v (5.96) r. Siin mõistetakse suurusi u ja v kui radiaalset ja tangentsiaalset siirdekomponenti. Hooke i seaduse kuju jääb endiseks: ε r = E (σ r νσ ϑ ), ε ϑ = E (σ ϑ νσ r ), γ rϑ = τ rϑ G. (5.97) Siirete määramine toimub analoogiliselt DRK-ga.

35 5.. Kõvera tala paine Kõvera tala paine M r ϑ a b M Joonis 5.7: Kõvera tala paine. Näitena vaatleme kõvera tala puhast painet, st. vaatleme tala, mis paindub kõverustasapinnas otstesse rakendatud momentide M mõjul. Sel juhul jääb paindemoment konstantseks kogu varda pikkuse ulatuses, järelikult sõltub pinge vaid radiaalkoordinaadist r. Seega saab kasutada lahendit (5.95). 5.. Kõvera tala paine 5-7 Rajatingimused: σ r =, r = a, r = b, b b σ ϑ dr =, σ ϑ rdr = M a a τ rϑ =, kõigil rajapindadel. Pärast rajatingimuste (5.98) rahuldamist ja tähistuse N = (b a ) 4a b ln b a (5.98) (5.99) sissetoomist saame σ r = 4M ( a b ln b N r a +b ln r b +a ln a ), r σ ϑ = 4M ( a b ln b N r a +b ln r b +a ln a ) r +b a, τ rϑ =. (5.) Lahendontäpnevaidsiiskuipingejaotusotspindadelvastabavaldisele(5.). Muil juhtudel tuleb rakendada Saint-Venanti printsiipi.

36 5.. Kõvera tala paine 5-7 Joonisel 5.8 on esitatud suurused σ ϑ a /M ja σ r a /M sõltuvana suhtest r/a juhul kui b/a =. σ ϑ a /M (,443; ) r/a Joonis 5.8: Pingete jaotus kõvera tala paindel. σ r a /M (,36;,699) r/a Järeldused: ) σ r > iga r puhul vaadeldavas piirkonnas; ) neutraalne telg vastab r/a =,443 ja maσ ϑ > minσ ϑ ; 3) σ r maksimum ei asu neutraalsel teljel. 5.. Pöörlev ketas Pöörlev ketas Teiseks näiteks polaarkoordinaatide puhul on pöörleva ketta ülesanne. Vaatleme ketast, mille välisraadius on b ja mis pöörleb jääva nurkkiirusega ω. Ketta paksuse loeme raadiusega võrreldes väikeseks. Ainsaks mahujõuks (mida arvesse võtame) on inertsjõud, st. f r = ρω r ja f ϑ =. Antud juhul on tegu nn. polaarsümmeetrilise ülesandega, kus σ r ja σ ϑ sõltuvad vaid koordinaadist r ja seega valemi (5.9) põhjal τ rϑ =. Teine tasakaaluvõrrandeist (5.9) on antud juhul automaatselt rahuldatud ja esimesele saab anda kuju d dr (rσ r) σ ϑ +ρω r =. (5.) Kuna ka ε r ja ε ϑ on vaid r funktsioonid, siis (5.96) põhjal ε r = u r, ε ϑ = u r. (5.) Hooke i seadusest (5.97) σ r = E ν (ε r νε ϑ ), σ ϑ = E ν (ε ϑ νε r ). (5.3)

37 5.. Pöörlev ketas 5-73 Asendades nüüd deformatsioonikomponendid (5.) Hooke i seadusse (5.3) ning viimase omakorda tasakaaluvõrrandisse (5.) saame diferentsiaalvõrrandi siirdekomponendi u määramiseks: r d u dr +rdu u = ν dr E ρω r 3. (5.4) Selle diferentsiaalvõrrandi üldlahend avaldub kujul u = [ ] ( ν)cr (+ν)c E r ν ρω r 3. (5.5) 8 Vastavad pingekomponendid σ r = C +C r 3+ν 8 ρω r, σ ϑ = C C r +3ν ρω r. 8 Konstandid C ja C määratakse rajatingimustest. (5.6) Täisketta (ilma auguta keskel) puhul vastab r = siire u =, seega C =. Ketta serval r = b jõudude puudumisel σ r =, seega C = 3+ν 8 ρω b. (5.7) 5.. Pöörlev ketas 5-74 Seega pingekomponendid σ r = 3+ν 8 ρω (b r ) σ ϑ = 3+ν 8 ρω b +3ν (5.8) ρω r 8 Plaadi keskel on neil pingetel maksimaalne väärtus σ r = σ ϑ = 3+ν 8 ρω b. (5.9) Kui ketta keskel on ava raadiusega a, siis konstandid C ja C määratakse rajatingimustest σ r r=a = σ r r=b = C = 3+ν 8 ρω (a +b ), C = 3+ν 8 ρω a b. (5.) Pingekomponendid σ r = 3+ν (b 8 ρω +a a b ) r, r σ ϑ = 3+ν 8 ρω (b +a + a b r +3ν 3+ν r ). (5.)

38 5.. Pöörlev ketas 5-75 Radiaalpinge σ r on nüüd maksimaalne kohal r = ab ja tangentsiaalpinge (rõngaspinge, i.k. hoop stress) σ ϑ sisemisel serval maσ r = 3+ν 8 ρω (b a), maσ ϑ = 3+ν 4 ρω ( b + ν 3+ν a ). (5.) Kui a, siis maσ ϑ läheneb väärtusele, mis on kaks korda suurem kui avaldisega (5.9) esitatud väärtus. Seega kui teha täisketta tsentrisse väike ava, siis suureneb tangentsiaalpinge plaadi tsentris kaks korda Radiaalne pingus Radiaalne pingus. Küllaltki tihti esineb ülesandeid, kus igas keha punktis on nullist erinev vaid radiaalne pinge σ r. Sellist pingust nimetatakse radiaalseks pinguseks. Antud juhul saab esitada pinge σ r (r,ϑ) kahe funktsiooni korrutisena: σ r (r,ϑ) = ϕ(r)ψ(ϑ). (5.3) Pannes viimase tasakaalu- ja pidevusvõrrandeisse ning integreerides, saame radiaalse pinguse jaoks pingekomponentide avaldised σ r (r,ϑ) = k r cos(ϑ ϑ ), σ ϑ = τ rϑ =, (5.4) kus integreerimiskonstandid k ja ϑ määratakse rajatingimustest.

39 5.4. Kiilu surve Kiilu surve. F α α z Vaatleme lõpmata pikka sümmeetrilist kiilu (joonis 5.9), mille sümmeetriatasandis mõjub joonkoormus F. Kiilu tipunurga tähistame α. Analoogiliselt tugiseina arvutusega, hülgame rajatingimused kiilualaservasjavaatleme. Joonis 5.9: Sümmeertiline kiil ja tema sümmeetriatasandis mõjuv jõud Kiilu surve Joonis 5.3: Sümmeertilisele kiilule mõjuv jõud, radiaalne pinge, polaar ja ristkoordinaadid. Võtame kasutusele polaarkoordinaadid r ja ϑ (joonis 5.3). Sellisel juhul on tegu radiaalse pingusega ja pingekomponendid on esitatavad kujul (5.4). Konstantide k ja ϑ määrmiseks tuleb kõik joonisel 5.3 kujutatud jõud (ja pinged) projekteerida koordinaatide r ja ϑ (või ja sihile). Kuna välisjõud on vaadeldaval juhul vertikaalne (ja mõjub sümmeetriatasandis), siis on konstant ϑ =. Konstandi k määramiseks projekteeritakse F ja σ r -teljele: F α α σ r (cosϑ)rdϑ =, (5.5)

40 5.4. Kiilu surve kust arvestades (5.4) saame F α α k r cos ϑrdϑ =, k = Kokku saame seega lahendi kujul: F σ r = α+sinα F α+sinα. (5.6) cosϑ, σ ϑ = τ rϑ =. (5.7) r Kuna valemite (5.4) tuletamisel kasutati nii tasakaalu kui pidevuse võrrandeid, siis rahuldab ka vaadeldava ülesande lahend (5.7) nii tasakaalu kui pidevuse võrrandeid Kiilu surve. 5-8 Praktiliste probleemide korral (vt. näiteks järgmist alajaotust) on siiski otstarbekas kasutada koordinaate ja. Üleminekuks on järgmised valemid: σ =σ r l +σ ϑ m +τ rϑ lm, σ =σ r l +σ ϑ m +τ rϑ l m, (5.8) τ =σ r ll +σ ϑ mm +τ rϑ (lm +l m), l =cos(r,) = sinϑ, r = +, m =cos(ϑ,) = cosϑ, sinϑ = + l =cos(r,) = cosϑ,, (5.9) m =cos(ϑ,) = sinϑ cosϑ = +. Kokku saame kolm koordinaatidele ja vastavat pingekomponenti σ = k ( + ), σ = k3 ( + ), τ = k ( + ). (5.)

41 5.5. Joonkoormuse mõju poolruumile Joonkoormuse mõju poolruumile F Joonis 5.3: Elastsele poolruumile mõjuv joonkoormus. ning ristkoordinaatides z Vaatleme elastset keskkonda, mis on piiratud koordinaattasandiga (, z) ja millele mõjub piki z telge rakendatud jõud F. Selline ülesanne on tuntud Flamant ülesandena ja ta kujutab endast eelmises alajaotuses vaadeldud kiilu ülesande erijuhtu, kus nurk α = π/. Järelikult konstant k = F/π ja pingekomponendid polaarkoordinaatides σ r = F cosϑ, σ ϑ = τ rϑ = (5.) πr σ = F π( + ), σ = F3 π( + ), τ = F π( + ). (5.) 5.5. Joonkoormuse mõju poolruumile 5-8 ja σ epüürid F = kohal = 5 5 ja τ epüürid F = kohal = 5 5 Joonis 5.3: Normaapinge σ ja nihkepinge τ epüürid koordinaadi fikseeritud väärtuste jaoks kohal = mõjuva ühikulise jõu F korral. On selge, et vaadeldavas piirkonnas on normaalpinged negatiivsed iga ja korral, nihkepinge τ aga muudab jõu rakenduspunkti kohal oma märki: negatiivsete korral on τ > ja positiivsete korral on τ <. Joonisel 5.3 on esitatud normaalpinge σ ja nihkepinge τ epüürid koordinaadi fikseeritud väärtustel =,,...,5.

42 5.5. Joonkoormuse mõju poolruumile F = kohal = ja σ epüürid Joonis 5.33: Normaapinge σ epüürid koordinaadi fikseeritud väärtuste jaoks kohal = mõjuva ühikulise jõu F korral. Joonisel 5.33 on esitatud normaalpinge σ epüürid koordinaadi fikseeritud väärtuste = 3,,,,,3 jaoks. Fikseeritud korral omab normaalpinge σ ekstremaalset väärtust kohal =, ja nihkepinge τ kohal = / 3. Analoogiliselt, fikseeritud = korral omab normaalpinge σ ekstremaalset väärtust kohal = / Joonkoormuse mõju poolruumile 5-84 Samapinge jooned radiaalpingele σ r ; F = Joonis 5.34: Radiaalpinge σ r samapinge jooned kohal = mõjuva ühikjõu F korral. Joonisel 5.34 on esitatud radiaalpinge σ r samapinge jooned ringjoonel raadiusega r on radiaalpinge σ r = F/πr. Kõik sellised ringjooned puutuvad -telge jõu F rakenduspunktis. Sellise graafilise radiaalpingte esituse andis esmakordselt Joseph Boussinesq ning seetõttu nimetatakse neid ringe Boussinesqi ringideks.

43 5.5. Joonkoormuse mõju poolruumile 5-85 radiaalpinge σ r samapinge ringjoone raadius r Joonis 5.35: Radiaalpinge σ r sõltuvana samapinge joone raadiusest r kui F =. Joonisel 5.35 on näidatud kuidas jõu F = korral sõltub radiaalpinge σ r samapinge joone raadiusest r Joonkoormuse mõju poolruumile 5-86 Valemeid (5.) ja (5.) võib kasutada selleks, et hinnata vundamendialuseid pingeid pinnases. Kuigi pinnas üldiselt ei käitu elastselt, on siiski leitud, et väikeste sisepingete korral on kõigil pinnastel rakendatav lineaarne elastsusteooria. Eelpool vaadeldud lahend on lihtsalt üldistatav suvalise joonkoormuse p() jaoks, mis mõjub lõigul [a, b]. Esmalt vaatleme juhtu, kus koondatud jõud F ei mõju mitte koordinaatide alguses, vaid punktis =. Sel juhul saavad valemid (5.) kuju σ = Fξ π(ξ + ), σ = F3 π(ξ + ), τ = Fξ π(ξ + ) (5.3) kus ξ =. Selleks, et arvutada lõigul a b mõjuvast joonkoormusest p() põhjustatud pingeid, tuleb saadud valemites teha asendus F = p(ξ)dξ ja integreerida lõigul [a,b].

44 5.5. Joonkoormuse mõju poolruumile 5-87 Juhul kui p = const., saame σ = p π = p π =b =a [ arctan ( b) ξ ( (ξ + ) dξ = p arctan ξ π ξ ) =b ξ + =a arctan ( a) = ( b) ( b) + + ( a) ] ( a), + (5.4) σ = p π =b =a 3 ( (ξ + ) dξ = p arctan ξ π + ξ ) =b ξ + =a = = p π [ arctan ( b) arctan ( a) + ( b) ( b) + ( a) ] ( a), + (5.5) 5.5. Joonkoormuse mõju poolruumile 5-88 =b ξ =b τ = p π =a (ξ + ) dξ = p πξ + = p [ π =a = ( b) + ( a) + ]. (5.6) Saadud valemite (5.4) (5.6) abil on võimalik hinnata pingeid vundamendialuses pinnases. JaanMetsaveerekoostatudõppevahendis 4 onväljapakutudalternatiivnevalem σ p = π (5.7) a, kus p on alusmüüri pikkusühikule mõjuv koormus, a vundamendi pikkus ja a a. See valem baseerub ideel määrata vundamendi ja pinnase vaheline rõhk, mis põhjustab ühtlase vertikaalsiirde kogu vundamendi ulatuses. Viimase valemi põhjal peaks vundamendi servades = ±a tekkima lõpmata suured pinged. Tegelikkuses selline olukord ei realiseeru juba suhteliselt väikeste pingete juures tekkivad = ±a ümbruses plastsed deformatsioonid ning tegelik pingejaotus on tunduvalt ühtlasem. 4 J. Metsaveer, Plaatide arvutus ja tasandülesanne, Tallinn, 987

45 5.6. Näide: joonkoormuse mõju poolruumile Näide: joonkoormuse mõju poolruumile Ülesanne. Poolruumile mõjub lõigul 5 5 kontsantne joonkoormus p =. Leida normaalpinged σ, σ ja τ koordinaatide ja fikseeritud väärtuste jaoks kasutades eelmises alajaotuses toodud valemeid. Lahendus.. Normaalpinge σ arvutamiseks saab kasutada valemeid (5.5), (5.3) või (5.7). Valem (5.5) võimaldab leida pinge σ väärtusi iga ja jaoks. Valemi (5.3) rakendamiseks tuleb lõik 5 5 jagada n võrdseks osalõiguks pikkusega = a/n ja joonkoormus n+ koondatud jõuks. Osalõikude otstes i = a+i, (i =,...,n) mõjuvad sel juhul koondatud jõud F i = ap/(n+). Iga jõud F i põhjustab pinge σ (F i ). Seega, rakendades superpositsiooni printsiipi, avaldub n+ jõust põhjustatud pinge summana σ = n i= σ (F i ). Valem (5.7) on mõeldud pingete arvutamiseks vahetult vundamendi all ning seetõttu pole seal koordinaati Näide: joonkoormuse mõju poolruumile 5-9 Tulemused on esitatud joonistel Joonisel 5.36 on osalõikude arv n =, joonisel 5.37 n = ja joonisel 5.38 n =. Punane punktiirjoon vastab valemile (5.5), violetne kriipsjoon valemile (5.7) ja sinine pidev joon valemile (5.3).. Nihkepinge τ arvutamiseks saab kasutada valemeid (5.6) või (5.3) 3. Valemi (5.6) abil leida pinge τ väärtusi iga ja jaoks. Analoogiliseltnormaalpingegaσ,tulebvalemi(5.3) 3 rakendamiseks lõik 5 5 jagada n võrdseks osalõiguks ja joonkoormus n + koondatud jõuks. Kokku saame nüüd τ = n i= τ (F i ). Tulemused on esitatud joonistel Joonisel 5.36 on osalõikude arv n =, joonisel 5.37 n = ja joonisel 5.38 n =. Punane punktiirjoon vastab valemile (5.6) ja sinine pidev joon valemile (5.3) 3.

46 5.6. Näide: joonkoormuse mõju poolruumile Normaalpinge σ arvutamiseks saab kasutada valemeid (5.4) või (5.3). Valemite (5.4) ja (5.3) kasutamise põhimõtted on samad, mis eelnevatel juhtudel. Tulemused on esitatud joonistel Joonisel 5.39 on osalõikude arv n =, joonisel 5.4 n = ja joonisel 5.4 n =. Punane punktiirjoon vastab valemile (5.4) ja sinine pidev joon valemile (5.3). 4. Joonistel on lisaks esitatud samapingejooned pingetele σ, σ ja τ piirkonnas, < Näide: joonkoormuse mõju poolruumile 5-9 ja σ 3 ja τ Joonis5.36:Normaapingeσ janihkepingeτ epüüridkoordinaadi fikseeritudväärtustejaoks lõigul 5 5 mõjuva ühikulise joonkoormuse korral, osalõikude arv n =.

47 5.6. Näide: joonkoormuse mõju poolruumile 5-93 ja σ 3 ja τ Joonis5.37:Normaapingeσ janihkepingeτ epüüridkoordinaadi fikseeritudväärtustejaoks lõigul 5 5 mõjuva ühikulise joonkoormuse korral, osalõikude arv n = Näide: joonkoormuse mõju poolruumile 5-94 ja σ 3 ja τ Joonis5.38:Normaapingeσ janihkepingeτ epüüridkoordinaadi fikseeritudväärtustejaoks lõigul 5 5 mõjuva ühikulise joonkoormuse korral, osalõikude arv n =.

48 5.6. Näide: joonkoormuse mõju poolruumile ja σ epüürid Joonis 5.39: Normaapinge σ epüürid koordinaadi fikseeritud väärtuste jaoks lõigul 5 5 mõjuva ühikulise joonkoormuse korral, osalõikude arv n = Näide: joonkoormuse mõju poolruumile ja σ epüürid Joonis 5.4: Normaapinge σ epüürid koordinaadi fikseeritud väärtuste jaoks lõigul 5 5 mõjuva ühikulise joonkoormuse korral, osalõikude arv n =.

49 5.6. Näide: joonkoormuse mõju poolruumile ja σ epüürid Joonis 5.4: Normaapinge σ epüürid koordinaadi fikseeritud väärtuste jaoks lõigul 5 5 mõjuva ühikulise joonkoormuse korral, osalõikude arv n = Näide: joonkoormuse mõju poolruumile Joonis 5.4: Samapingejooned normaapinge σ jaoks.

50 5.6. Näide: joonkoormuse mõju poolruumile Joonis 5.43: Samapingejooned normaapinge σ jaoks Näide: joonkoormuse mõju poolruumile Joonis 5.44: Samapingejooned nihkepinge τ jaoks.

elastsus_opetus_2005_14.dvi

elastsus_opetus_2005_14.dvi 7.4. Näiteid ümar- ja rõngasplaatide paindeülesannetest. 298 7.4 Näiteid ümar- ja rõngasplaatide paindeülesannetest. Rajatingimused: jäik kinnitus vaba toetus vaba serv w = 0, dw dr = 0; (7.43) w = 0,

Rohkem

Tala dimensioonimine vildakpaindel

Tala dimensioonimine vildakpaindel Tala dimensioonimine vildakpaindel Ülesanne Joonisel 9 kujutatud okaspuidust konsool on koormatud vertikaaltasandis ühtlase lauskoormusega p ning varda teljega risti mõjuva kaldjõuga (-jõududega) F =pl.

Rohkem

elastsus_opetus_2013_ptk2.dvi

elastsus_opetus_2013_ptk2.dvi Peatükk 2 Pinge 1 2.1. Jõud ja pinged 2-2 2.1 Jõud ja pinged Kehale mõjuvad välisjõud saab jagada kahte rühma. 1. Pindjõud ehk kontaktjõud on põhjustatud keha kontaktist teiste kehade või keskkondadega.

Rohkem

elastsus_opetus_2017_ptk3

elastsus_opetus_2017_ptk3 1 Peatükk 3 Deformatsioon ja olekuvõrrandid 3.1. Siire ja deformatsioon 3-2 3.1 Siire ja deformatsioon 3.1.1 Cauchy seosed Vaatleme deformeeruva keha meelevaldset punkti A. Algolekusontemakoor- dinaadid

Rohkem

lvk04lah.dvi

lvk04lah.dvi Lahtine matemaatikaülesannete lahendamise võistlus. veebruaril 004. a. Lahendused ja vastused Noorem rühm 1. Vastus: a) jah; b) ei. Lahendus 1. a) Kuna (3m+k) 3 7m 3 +7m k+9mk +k 3 3M +k 3 ning 0 3 0,

Rohkem

Sissejuhatus mehhatroonikasse MHK0120

Sissejuhatus mehhatroonikasse  MHK0120 Sissejuhatus mehhatroonikasse MHK0120 5. nädala loeng Raavo Josepson raavo.josepson@ttu.ee Pöördliikumine Kulgliikumine Kohavektor Ԧr Kiirus Ԧv = d Ԧr dt Kiirendus Ԧa = dv dt Pöördliikumine Pöördenurk

Rohkem

Polünoomi juured Juure definitsioon ja Bézout teoreem Vaadelgem polünoomi kus K on mingi korpus. f = a 0 x n + a 1 x n a n 1 x

Polünoomi juured Juure definitsioon ja Bézout teoreem Vaadelgem polünoomi kus K on mingi korpus. f = a 0 x n + a 1 x n a n 1 x 1 5.5. Polünoomi juured 5.5.1. Juure definitsioon ja Bézout teoreem Vaadelgem polünoomi kus K on mingi korpus. f = a 0 x n + a 1 x n 1 +... + a n 1 x + a n K[x], (1) Definitsioon 1. Olgu c K. Polünoomi

Rohkem

Matemaatiline analüüs IV 1 3. Mitme muutuja funktsioonide diferentseerimine 1. Mitme muutuja funktsiooni osatuletised Üleminekul ühe muutuja funktsioo

Matemaatiline analüüs IV 1 3. Mitme muutuja funktsioonide diferentseerimine 1. Mitme muutuja funktsiooni osatuletised Üleminekul ühe muutuja funktsioo Matemaatiline analüüs IV 1 3. Mitme muutuja funktsioonide diferentseerimine 1. Mitme muutuja funktsiooni osatuletised Üleminekul üe muutuja funktsioonidelt m muutuja funktsioonidele, kus m, 3,..., kerkib

Rohkem

METALL

METALL 1. Plaadi arvutus 1.1 Koormused plaadile Normkoormused: kasuskoormus: q k =17 kn/m 2 Arvutuskoormused: kasuskoormus: q d =1,5*17=25,5 kn/m 2 1.2 Plaadi arvutrusskeem ja dimensioneermine Abitalade sammuks

Rohkem

pkm_2016_ptk7_olekuvõrrandid

pkm_2016_ptk7_olekuvõrrandid 1 Peatükk 7 Olekuvõrrandid 7.1 Sissejuhatus Vastavalt pideva keskkonna neljale põhiaksioomile oleme saanud põhivõrrandite süsteemi, mis koosneb kaheksast sõltumatust võrrandist 1. 1. Massi jäävuse seadus

Rohkem

pkm_2010_ptk1_Sissejuh.dvi

pkm_2010_ptk1_Sissejuh.dvi Peatükk 1 Sissejuhatus ülevaade staatika, dünaamika ja tugevusõpetuse põhimõistetest, hüpoteesidest ja võrranditest 1 1.1. Mehaanika harud 1-2 1.1 Mehaanika harud Mehaanika on teadus, mis uurib tahkete

Rohkem

vv05lah.dvi

vv05lah.dvi IMO 05 Eesti võistkonna valikvõistlus 3. 4. aprill 005 Lahendused ja vastused Esimene päev 1. Vastus: π. Vaatleme esiteks juhtu, kus ringjooned c 1 ja c asuvad sirgest l samal pool (joonis 1). Olgu O 1

Rohkem

Matemaatiline analüüs III 1 4. Diferentseeruvad funktsioonid 1. Diferentseeruvus antud punktis. Olgu funktsiooni f : D R määramispiirkond D R selles p

Matemaatiline analüüs III 1 4. Diferentseeruvad funktsioonid 1. Diferentseeruvus antud punktis. Olgu funktsiooni f : D R määramispiirkond D R selles p Matemaatiline analüüs III 4. Diferentseeruvad funktsioonid. Diferentseeruvus antud punktis. Olgu funktsiooni f : D R määramispiirkond D R selles paragravis mingi (lõplik või lõpmatu) intervall ning olgu

Rohkem

Sügis 2018 Kõrgema matemaatika 2. kontrolltöö tagasiside Üle 20 punkti kogus tervelt viis üliõpilast: Robert Johannes Sarap, Enely Ernits, August Luur

Sügis 2018 Kõrgema matemaatika 2. kontrolltöö tagasiside Üle 20 punkti kogus tervelt viis üliõpilast: Robert Johannes Sarap, Enely Ernits, August Luur Sügis 2018 Kõrgema matemaatika 2. kontrolltöö tagasiside Üle 20 punkti kogus tervelt viis üliõpilast: Robert Johannes Sarap, Enely Ernits, August Luure, Urmi Tari ja Miriam Nurm. Ka teistel oli edasiminek

Rohkem

Praks 1

Praks 1 Biomeetria praks 6 Illustreeritud (mittetäielik) tööjuhend Eeltöö 1. Avage MS Excel is oma kursuse ankeedivastuseid sisaldav andmestik, 2. lisage uus tööleht, nimetage see ümber leheküljeks Praks6 ja 3.

Rohkem

IMO 2000 Eesti võistkonna valikvõistlus Tartus, aprillil a. Ülesannete lahendused Esimene päev 1. Olgu vaadeldavad arvud a 1, a 2, a 3,

IMO 2000 Eesti võistkonna valikvõistlus Tartus, aprillil a. Ülesannete lahendused Esimene päev 1. Olgu vaadeldavad arvud a 1, a 2, a 3, IMO 000 Eesti võistkonna valikvõistlus Tartus, 19. 0. aprillil 000. a. Ülesannete lahendused Esimene päev 1. Olgu vaadeldavad arvud a 1, a, a 3, a 4, a 5. Paneme tähele, et (a 1 + a + a 3 a 4 a 5 ) (a

Rohkem

MATEMAATILINE ANALÜÜS I. ESIMESE KONTROLLTÖÖ NÄITEÜLESANDED (1) Leida funktsiooni y = sin x + ln(16 x 2 ) määramispiirkond. (2) Leida funktsiooni y =

MATEMAATILINE ANALÜÜS I. ESIMESE KONTROLLTÖÖ NÄITEÜLESANDED (1) Leida funktsiooni y = sin x + ln(16 x 2 ) määramispiirkond. (2) Leida funktsiooni y = MATEMAATILINE ANALÜÜS I. ESIMESE KONTROLLTÖÖ NÄITEÜLESANDED () Leida funktsiooni y = sin + ln(6 ) määramispiirkond. () Leida funktsiooni y = arcsin( 5 + 5) + 9 määramispiirkond. () Leida funktsiooni määramispiirkond

Rohkem

Matemaatilised meetodid loodusteadustes. I Kontrolltöö I järeltöö I variant 1. On antud neli vektorit: a = (2; 1; 0), b = ( 2; 1; 2), c = (1; 0; 2), d

Matemaatilised meetodid loodusteadustes. I Kontrolltöö I järeltöö I variant 1. On antud neli vektorit: a = (2; 1; 0), b = ( 2; 1; 2), c = (1; 0; 2), d Matemaatilised meetodid loodusteadustes I Kontrolltöö I järeltöö I variant On antud neli vektorit: a (; ; ), b ( ; ; ), c (; ; ), d (; ; ) Leida vektorite a ja b vaheline nurk α ning vekoritele a, b ja

Rohkem

raamat5_2013.pdf

raamat5_2013.pdf Peatükk 5 Prognoosiintervall ja Usaldusintervall 5.1 Prognoosiintervall Unustame hetkeks populatsiooni parameetrite hindamise ja pöördume tagasi üksikvaatluste juurde. On raske ennustada, milline on huvipakkuva

Rohkem

ma1p1.dvi

ma1p1.dvi Peatükk 1 Funktsioonid ja nendega seotud mõisted 1.1 Reaalarvud ja Arvtelg. Absoluutväärtuse mõiste. Reaalarvudest koosnevad hulgad. Enne arvu mõiste käsitlemist toome sisse mõned hulkadega seotud tähised.

Rohkem

efo03v2pkl.dvi

efo03v2pkl.dvi Eesti koolinoorte 50. füüsikaolümpiaad 1. veebruar 2003. a. Piirkondlik voor Põhikooli ülesannete lahendused NB! Käesoleval lahendustelehel on toodud iga ülesande üks õige lahenduskäik. Kõik alternatiivsed

Rohkem

untitled

untitled et Raketise eksperdid. Kaarraketis Framax Xlife Raamraketis Framax Xlife Informatsioon kasutajale Instruktsioon paigaldamiseks ja kasutamiseks 9727-0-01 Sissejuhatus tus Sissejuha- by Doka Industrie GmbH,

Rohkem

Võistlusülesanne Vastutuulelaev Finaal

Võistlusülesanne Vastutuulelaev Finaal Võistlusülesanne Vastutuulelaev Finaal CADrina 2016 võistlusülesannete näol on tegemist tekst-pilt ülesannetega, milliste lahendamiseks ei piisa ainult jooniste ülevaatamisest, vaid lisaks piltidele tuleb

Rohkem

Praks 1

Praks 1 Biomeetria praks 6 Illustreeritud (mittetäielik) tööjuhend Eeltöö 1. Avage MS Excel is ankeedivastuseid sisaldav andmestik, 2. lisage uus tööleht, nimetage see ümber leheküljeks Praks6 ja 3. kopeerige

Rohkem

VL1_praks6_2010k

VL1_praks6_2010k Biomeetria praks 6 Illustreeritud (mittetäielik) tööjuhend Eeltöö 1. Avage MS Excel is oma kursuse ankeedivastuseid sisaldav andmestik, 2. lisage uus tööleht (Insert / Lisa -> Worksheet / Tööleht), nimetage

Rohkem

Microsoft Word - Sobitusahelate_projekteerimine.doc

Microsoft Word - Sobitusahelate_projekteerimine.doc Sobitusahelate projekteerimine Vaatleme 3 erinevat meetodit: koondparameetitega elementidel sobitamine häälestusribaga sobitamine veerandlainelõiguga sobitamine Sobitust võib vaadelda koormustakistuse

Rohkem

XV kursus

XV kursus KORDAMINE RIIGIEKSAMIKS VI FUNKTSIOONID JA NENDE GRAAFIKUD. TULETISE RAKENDUSED.. Funktsiooni määramispiirkonna ( X ) moodustavad argumendi () väärtused, mille korral funktsiooni väärtus (y) on eeskirjaga

Rohkem

pkm_2010_ptk6_ko_ja_kontravariantsus.dvi

pkm_2010_ptk6_ko_ja_kontravariantsus.dvi Peatükk 6 Kovariantsus ja kontravariantsus ehk mis saab siis kui koordinaatideks pole Descartes i ristkoordinaadid 1 6.1. Sissejuhatus 6-2 6.1 Sissejuhatus Seni oleme kasutanud DRK, kuid üldjuhul ei pruugi

Rohkem

prakt8.dvi

prakt8.dvi Diskreetne matemaatika 2012 8. praktikum Reimo Palm Praktikumiülesanded 1. Kas järgmised graafid on tasandilised? a) b) Lahendus. a) Jah. Vahetades kahe parempoolse tipu asukohad, saame graafi joonistada

Rohkem

laoriiulida1.ai

laoriiulida1.ai LAORIIULID LAORIIULID KAUBAALUSTE RIIULID , arhiiviriiulid - Lk.3 Liikuvad arhiiviriiulid - Lk.5 Laiad laoriiulid - Lk.11 Kaubaaluste riiulid - Lk.13 Drive-in riiulid - Lk.14 Konsool- ehk harudega riiulid

Rohkem

12. Marek Kolk, Kõrgem matemaatika, Tartu Ülikool, Algfunktsioon ja määramata integraal Sisukord 12 Algfunktsioon ja määramata integraal 1

12. Marek Kolk, Kõrgem matemaatika, Tartu Ülikool, Algfunktsioon ja määramata integraal Sisukord 12 Algfunktsioon ja määramata integraal 1 2. Marek Kolk, Kõrgem matemaatika, Tartu Ülikool, 203-. 2 Algfunktsioon ja määramata integraal Sisukord 2 Algfunktsioon ja määramata integraal 9 2. Sissejuhatus................................... 50 2.2

Rohkem

Microsoft Word - vundamentide tugevdamine.doc

Microsoft Word - vundamentide tugevdamine.doc 10 Vundamentide tugevdamine. 1. Vundamentide tugevdamise põhjused 2. Tugevdamisega seotud uuringud 3. Tugevdusmeetodid 3.1 Vundamendi süvendamine 3.2 Talla laiendamine 3.3 Koormuse ülekanne vaiadele 3.4

Rohkem

Antennide vastastikune takistus

Antennide vastastikune takistus Antennide vastastikune takistus Eelmises peatükis leidsime antenni kiirgustakistuse arvestamata antenni lähedal teisi objekte. Teised objektid, näiteks teised antennielemendid, võivad aga mõjutada antenni

Rohkem

QUANTUM SPIN-OFF - Experiment UNIVERSITEIT ANTWERPEN

QUANTUM SPIN-OFF - Experiment UNIVERSITEIT ANTWERPEN 1 Kvantfüüsika Tillukeste asjade füüsika, millel on hiiglaslikud rakendusvõimalused 3. osa: PRAKTILISED TEGEVUSED Elektronide difraktsioon Projekti Quantum Spin-Off rahastab Euroopa Liit programmi LLP

Rohkem

8.klass 4 tundi nädalas, kokku 140 tundi Hulkliikmed ( 45 tundi) Õppesisu Hulkliige. Hulkliikmete liitmine ja lahutamine ning korrutamine ja jagamine

8.klass 4 tundi nädalas, kokku 140 tundi Hulkliikmed ( 45 tundi) Õppesisu Hulkliige. Hulkliikmete liitmine ja lahutamine ning korrutamine ja jagamine 8.klass 4 tundi nädalas, kokku 140 tundi Hulkliikmed ( 45 tundi) Hulkliige. Hulkliikmete liitmine ja lahutamine ning korrutamine ja jagamine üksliikmega. Hulkliikme tegurdamine ühise teguri sulgudest väljatoomisega.

Rohkem

Word Pro - diskmatTUND.lwp

Word Pro - diskmatTUND.lwp Loogikaalgebra ( Boole'i algebra ) George Boole (85 864) Sündinud Inglismaal Lincolnis. 6-aastasena tegutses kooliõpetaja assistendina. Õppis 5 aastat iseseisvalt omal käel matemaatikat, keskendudes hiljem

Rohkem

Automaatjuhtimise alused Automaatjuhtimissüsteemi kirjeldamine Loeng 2

Automaatjuhtimise alused Automaatjuhtimissüsteemi kirjeldamine Loeng 2 Automaatjuhtimise alused Automaatjuhtimissüsteemi kirjeldamine Loeng 2 Laplace'i teisendus Diferentsiaalvõrrandite lahendamine ilma tarkvara toeta on keeruline Üheks lahendamisvõtteks on Laplace'i teisendus

Rohkem

Image segmentation

Image segmentation Image segmentation Mihkel Heidelberg Karl Tarbe Image segmentation Image segmentation Thresholding Watershed Region splitting and merging Motion segmentation Muud meetodid Thresholding Lihtne Intuitiivne

Rohkem

Microsoft Word - A-mf-7_Pidev_vorr.doc

Microsoft Word - A-mf-7_Pidev_vorr.doc 7. PIDEVUE VÕRRAND, LIANDITE DIFUIOON 7.1. Põhivalemi tuletamine Pidevuse võrrand kirjeldab liikuva vedeliku- või gaasimassi jäävust ruumielementi sisseja väljavoolava massi erinevus väljendub ruumiühikus

Rohkem

efo03v2kkl.dvi

efo03v2kkl.dvi Eesti koolinoorte 50. füüsikaolümpiaad 1. veebruar 2003. a. Piirkondlik voor Gümnaasiumi ülesannete lahendused NB! Käesoleval lahendustelehel on toodud iga ülesande üks õige lahenduskäik. Kõik alternatiivsed

Rohkem

Treeningvõistlus Balti tee 2014 võistkonnale Tartus, 4. novembril 2014 Vastused ja lahendused 1. Vastus: 15, 18, 45 ja kõik 0-ga lõppevad arvud. Olgu

Treeningvõistlus Balti tee 2014 võistkonnale Tartus, 4. novembril 2014 Vastused ja lahendused 1. Vastus: 15, 18, 45 ja kõik 0-ga lõppevad arvud. Olgu Treeningvõistlus Balti tee 014 võistkonnale Tartus, 4. novembril 014 Vastused ja lahendused 1. Vastus: 15, 18, 45 ja kõik 0-ga lõppevad arvud. Olgu b arvu k üheliste number ning a arv, mille saame arvust

Rohkem

Стальной кубик находится под действием сил, создающих плоское напряженное состояние (одно из трех главных напряжений равно нул

Стальной кубик находится под действием сил, создающих плоское напряженное состояние (одно из трех главных напряжений равно нул Surutud varda abiisus (nõtke) Enamai varda otsad kinnitatakse ühe (Joon.1) näidatud neja viisi. Üejäänud kinnitusviiside puhu on kriitii jõudu võimaik määrata üdiatud Eueri vaemiga kp EImin, (1) kus -

Rohkem

BIOPUHASTI M-BOŠ BOX KASUTUS- JA PAIGALDUSJUHEND 2017

BIOPUHASTI M-BOŠ BOX KASUTUS- JA PAIGALDUSJUHEND 2017 BIOPUHASTI M-BOŠ BOX KASUTUS- JA PAIGALDUSJUHEND 2017 Biopuhasti tööprotsessi kirjeldus M-Bos biopuhastit kasutatakse puhastamaks reovett eramajades, koolides, hotellides ja teistes reovee puhastamist

Rohkem

6. KLASSI MATEMAATIKA E-TASEMETÖÖ ERISTUSKIRI Alus: haridus- ja teadusministri määrus nr 54, vastu võetud 15. detsembril E-TASEMETÖÖ EESMÄRK Tas

6. KLASSI MATEMAATIKA E-TASEMETÖÖ ERISTUSKIRI Alus: haridus- ja teadusministri määrus nr 54, vastu võetud 15. detsembril E-TASEMETÖÖ EESMÄRK Tas 6. KLASSI MATEMAATIKA E-TASEMETÖÖ ERISTUSKIRI Alus: haridus- ja teadusministri määrus nr 54, vastu võetud 15. detsembril 2015. E-TASEMETÖÖ EESMÄRK Tasemetööga läbiviimise eesmärk on hinnata riiklike õppekavade

Rohkem

efo09v2pke.dvi

efo09v2pke.dvi Eesti koolinoorte 56. füüsikaolümpiaad 17. jaanuar 2009. a. Piirkondlik voor. Põhikooli ülesanded 1. (VÄRVITILGAD LAUAL) Ühtlaselt ja sirgjooneliselt liikuva horisontaalse laua kohal on kaks paigalseisvat

Rohkem

BioMech_2011_1.dvi

BioMech_2011_1.dvi Tallinna Tehnikaülikool Mehaanikainstituut Rakendusmehaanika õppetool Andrus Salupere Biomehaanika (Sissejuhatavad loengud mehaanika) Tallinn 2011 2 Peatükk 1 Sissejuhatus 1.1 Mis on biomehaanika Biomehaanika

Rohkem

(geomeetria3_0000.eps)

(geomeetria3_0000.eps) Analüütilise geomeetria praktikum III L. Tuulmets Tartu 1980 3 4 Eessõna Käesolev analüütilise geomeetria praktikum on koostatud eeskätt TRÜ matemaatikateaduskonna vajadusi arvestades ning on mõeldud kasutamiseks

Rohkem

Pintsli otsade juurde tegemine Esiteks Looge pilt suurusega 64x64 ja tema taustaks olgu läbipaistev kiht (Transparent). Teiseks Minge kihtide (Layers)

Pintsli otsade juurde tegemine Esiteks Looge pilt suurusega 64x64 ja tema taustaks olgu läbipaistev kiht (Transparent). Teiseks Minge kihtide (Layers) Pintsli otsade juurde tegemine Esiteks Looge pilt suurusega 64x64 ja tema taustaks olgu läbipaistev kiht (Transparent). Teiseks Minge kihtide (Layers) aknasse ja looge kaks läbipaistvat kihti juurde. Pange

Rohkem

Kasutusjuhend Dragon Winch vintsile DWM, DWH, DWT seeria Sisukord Üldised ohutusnõuded... 3 Vintsimise ohutusnõuded... 3 Kasulik teada... 4 Vintsimise

Kasutusjuhend Dragon Winch vintsile DWM, DWH, DWT seeria Sisukord Üldised ohutusnõuded... 3 Vintsimise ohutusnõuded... 3 Kasulik teada... 4 Vintsimise Kasutusjuhend Dragon Winch vintsile DWM, DWH, DWT seeria Sisukord Üldised ohutusnõuded... 3 Vintsimise ohutusnõuded... 3 Kasulik teada... 4 Vintsimisel on hea teada... 5 Vintsi hooldus... 6 Garantii...

Rohkem

Terasest ja liimpuidust kandekarkasside võrdlev arvutus Nõo Konsumi näitel Magistritöö Juhendaja: Ivo Roolaht Üliõpilane Kristin Kartsep EAEI Ül

Terasest ja liimpuidust kandekarkasside võrdlev arvutus Nõo Konsumi näitel Magistritöö Juhendaja: Ivo Roolaht Üliõpilane Kristin Kartsep EAEI Ül Terasest ja liimpuidust kandekarkasside võrdlev arvutus Nõo Konsumi näitel Magistritöö Juhendaja: Ivo Roolaht Üliõpilane Kristin Kartsep 0652EAEI Üliõpilase meiliaadress kristin.kartsep@gmail.com Õppekava

Rohkem

SEPTIKU JA IMBVÄLAJKU KASUTUS-PAIGALDUS JUHEND 2017

SEPTIKU JA IMBVÄLAJKU KASUTUS-PAIGALDUS JUHEND 2017 SEPTIKU JA IMBVÄLAJKU KASUTUS-PAIGALDUS JUHEND 2017 Septiku ja imbväljaku tööprotsessi kirjeldus Üldine info ja asukoha valik: Septik on polüetüleenist (PE) rotovalu süsteemiga valmistatud mahuti, milles

Rohkem

EFEXON LIUGUKSED 2015 €URO.xls

EFEXON LIUGUKSED 2015 €URO.xls Aleco (profiili laius 35mm) Dekoratiiv klaas (13.70 FIANDRA MATT) Deco klaas (0230 deco, vt.kataloogist mõõte!) Deco kujundklaas (Deco16, Deco39) Melamiinpaneel LUX grupp 400600 601800 AS,BG,SG,BW AS,BG,SG,BW

Rohkem

Praks 1

Praks 1 Biomeetria praks 3 Illustreeritud (mittetäielik) tööjuhend Eeltöö 1. Avage MS Excel is oma kursuse ankeedivastuseid sisaldav andmestik, 2. lisage uus tööleht, 3. nimetage see ümber leheküljeks Praks3 ja

Rohkem

EESTI STANDARD EVS :2003 See dokument on EVS-i poolt loodud eelvaade GEOTEHNILINE PROJEKTEERIMINE Osa 1: Üldeeskirjad Geotechnical design Part 1

EESTI STANDARD EVS :2003 See dokument on EVS-i poolt loodud eelvaade GEOTEHNILINE PROJEKTEERIMINE Osa 1: Üldeeskirjad Geotechnical design Part 1 EESTI STANDARD GEOTEHNILINE PROJEKTEERIMINE Osa 1: Üldeeskirjad Geotechnical design Part 1: General rules EESTI STANDARDIKESKUS AMETLIK VÄLJAANNE EESSÕNA Eesti standard Geotehniline projekteerimine. Osa

Rohkem

Excel Valemite koostamine (HARJUTUS 3) Selles peatükis vaatame millistest osadest koosnevad valemid ning kuidas panna need Excelis kirja nii, et

Excel Valemite koostamine (HARJUTUS 3) Selles peatükis vaatame millistest osadest koosnevad valemid ning kuidas panna need Excelis kirja nii, et Excel2016 - Valemite koostamine (HARJUTUS 3) Selles peatükis vaatame millistest osadest koosnevad valemid ning kuidas panna need Excelis kirja nii, et programm suudaks anda tulemusi. Mõisted VALEM - s.o

Rohkem

Osakogumite kitsendustega hinnang Kaja Sõstra 1 Eesti Statistikaamet Sissejuhatus Valikuuringute üheks oluliseks ülesandeks on osakogumite hindamine.

Osakogumite kitsendustega hinnang Kaja Sõstra 1 Eesti Statistikaamet Sissejuhatus Valikuuringute üheks oluliseks ülesandeks on osakogumite hindamine. Osakogumite kitsendustega hinnang Kaja Sõstra 1 Eesti Statistikaamet Sissejuhatus Valikuuringute üheks oluliseks ülesandeks on osakogumite hindamine. Kasvanud on nõudmine usaldusväärsete ja kooskõlaliste

Rohkem

Microsoft PowerPoint CLT arvutamine_TTU

Microsoft PowerPoint CLT arvutamine_TTU RISTKIHTPUIDU PROJEKTEERIMINE SEMINAR: PUIT JA PUIDUPÕHISTE KONSTRUKTSIOONIDE PROJEKTEERIMINE Eero Tuhkanen 18.10.2016 1 TEEMAD RISTKIHTLIIMPUIDU OLEMUS MÄRKUSED TOOTMISE KOHTA RISTKIHTLIIMPUIDU KARAKTERISTKUD

Rohkem

DUŠINURK MILDA PAIGALDUSJUHEND 1. Enne paigaldustööde alustamist veenduge, et elektrikaablid, veetorud vms ei jääks kruviaukude alla! 2. Puhastage sei

DUŠINURK MILDA PAIGALDUSJUHEND 1. Enne paigaldustööde alustamist veenduge, et elektrikaablid, veetorud vms ei jääks kruviaukude alla! 2. Puhastage sei DUŠINURK MILDA PAIGALDUSJUHEND 1. Enne paigaldustööde alustamist veenduge, et elektrikaablid, veetorud vms ei jääks kruviaukude alla! 2. Puhastage seinad ja põrand enne dušinurga paigaldamist! 3. Kasutage

Rohkem

Microsoft Word - P6_metsamasinate juhtimine ja seadistamine FOP kutsekeskharidus statsionaarne

Microsoft Word - P6_metsamasinate juhtimine ja seadistamine FOP kutsekeskharidus statsionaarne MOODULI RAKENDUSKAVA Sihtrühm: forvarderioperaatori 4. taseme kutsekeskhariduse taotlejad Õppevorm: statsionaarne Moodul nr 6 Mooduli vastutaja: Mooduli õpetajad: Metsamasinate juhtimine ja seadistamine

Rohkem

ITI Loogika arvutiteaduses

ITI Loogika arvutiteaduses Predikaatloogika Predikaatloogika on lauseloogika tugev laiendus. Predikaatloogikas saab nimetada asju ning rääkida nende omadustest. Väljendusvõimsuselt on predikaatloogika seega oluliselt peenekoelisem

Rohkem

Microsoft PowerPoint - Loeng2www.ppt [Compatibility Mode]

Microsoft PowerPoint - Loeng2www.ppt [Compatibility Mode] Biomeetria 2. loeng Lihtne lineaarne regressioon mudeli hindamisest; usaldusintervall; prognoosiintervall; determinatsioonikordaja; Märt Möls martm@ut.ee Y X=x~ N(μ=10+x; σ=2) y 10 15 20 2 3 4 5 6 7 8

Rohkem

Fyysika 8(kodune).indd

Fyysika 8(kodune).indd Joonis 3.49. Nõgusläätses tekib esemest näiv kujutis Seega tekitab nõguslääts esemest kujutise, mis on näiv, samapidine, vähendatud. Ülesandeid 1. Kas nõgusläätsega saab seinale Päikese kujutist tekitada?

Rohkem

III teema

III teema KORDAMINE RIIGIEKSAMIKS IV TRIGONOMEETRIA ) põhiseosed sin α + cos α = sin tanα = cos cos cotα = sin + tan = cos tanα cotα = ) trigonomeetriliste funktsioonide täpsed väärtused α 5 6 9 sin α cos α tan

Rohkem

Microsoft Word _se-et_ok_korr_C.doc

Microsoft Word _se-et_ok_korr_C.doc 1(2) 26.06.2008 Projekti nr T000242-04 TÜÜBIKINNITUSTUNNISTUS 5141/91 ehitiste tehniliste nõuete seaduse (Byggnadsverklag BVL, 1994:847) paragrahvide 18 20 järgi OTSINGUSÕNA: TULEKAITSE Vahelagi TULEPÜSIVUSKLASSI

Rohkem

Infix Operaatorid I Infix operaatorid (näiteks +) ja tüübid (näiteks ->) kirjutatakse argumentide vahele, mitte argumentide ette. Näiteks: 5 + 2, 2*pi

Infix Operaatorid I Infix operaatorid (näiteks +) ja tüübid (näiteks ->) kirjutatakse argumentide vahele, mitte argumentide ette. Näiteks: 5 + 2, 2*pi Infix Operaatorid I Infix operaatorid (näiteks +) ja tüübid (näiteks ->) kirjutatakse argumentide vahele, mitte argumentide ette. Näiteks: 5 + 2, 2*pi*r^2, Float -> Int Infixoperaatori kasutamiseks prefix-vormis

Rohkem

Microsoft Word - Uudiskirja_Toimetulekutoetus docx

Microsoft Word - Uudiskirja_Toimetulekutoetus docx Toimetulekutoetuse maksmine 2014. 2018. aastal Sotsiaalministeeriumi analüüsi ja statistika osakond Toimetulekutoetust on õigus saada üksi elaval isikul või perekonnal, kelle kuu netosissetulek pärast

Rohkem

Eesti koolinoorte 66. füüsikaolümpiaad 06. aprill a. Vabariiklik voor. Gümnaasiumi ülesannete lahendused 1. (AUTOD) (6 p.) Kuna autod jäävad sei

Eesti koolinoorte 66. füüsikaolümpiaad 06. aprill a. Vabariiklik voor. Gümnaasiumi ülesannete lahendused 1. (AUTOD) (6 p.) Kuna autod jäävad sei Eesti koolinoorte 66. füüsikaolümpiaad 06. aprill 2019. a. Vabariiklik voor. Gümnaasiumi ülesannete lahendused 1. (AUTOD) (6 p.) Kuna autod jäävad seisma samaaegselt, siis läheme ühe ühe autoga seotud

Rohkem

Word Pro - digiTUNDkaug.lwp

Word Pro - digiTUNDkaug.lwp / näide: \ neeldumisseadusest x w x y = x tuleneb, et neeldumine toimub ka näiteks avaldises x 2 w x 2 x 5 : x 2 w x 2 x 5 = ( x 2 ) w ( x 2 ) [ x 5 ] = x 2 Digitaalskeemide optimeerimine (lihtsustamine)

Rohkem

Halli konstruktiivne skeem

Halli konstruktiivne skeem Kert Välman RAUDBETOONKARKASSIGA KAHEKORDSE HOONE JA HALLI KOOSTÖÖ LÕPUTÖÖ Ehitusteaduskond Hoonete ehituse eriala Tallinn 2016 Mina, Kert Välman, tõendan, et lõputöö on minu kirjutatud. Töö koostamisel

Rohkem

Ruutvormid Denitsioon 1. P n Ütleme, et avaldis i;j=1 a ijx i x j ; kus a ij = a ji ; a ij 2 K ja K on korpus, on ruutvorm üle korpuse K muutujate x 1

Ruutvormid Denitsioon 1. P n Ütleme, et avaldis i;j=1 a ijx i x j ; kus a ij = a ji ; a ij 2 K ja K on korpus, on ruutvorm üle korpuse K muutujate x 1 Ruutvormid Denitsioon. P n Ütleme, et avaldis i;j= a ijx i x j ; kus a ij = a ji ; a ij K ja K on korus, on ruutvorm üle koruse K muutujate x ;;x n suhtes. Maatriksit =(a ij ) nimetame selle ruutvormi

Rohkem

19. Marek Kolk, Kõrgem matemaatika, Tartu Ülikool, Arvridade koonduvustunnused Sisukord 19 Arvridade koonduvustunnused Vahelduvat

19. Marek Kolk, Kõrgem matemaatika, Tartu Ülikool, Arvridade koonduvustunnused Sisukord 19 Arvridade koonduvustunnused Vahelduvat 9. Marek Kolk, Kõrgem matemaatika, Tartu Ülikool, 203-4. 9 Arvridade koonduvustunnused Sisukord 9 Arvridade koonduvustunnused 23 9. Vahelduvate märkidega read.......................... 24 9.2 Leibniz i

Rohkem

(Microsoft Word - Matsalu Veev\344rk AS aktsion\344ride leping \(Lisa D\) Valemid )

(Microsoft Word - Matsalu Veev\344rk AS aktsion\344ride leping \(Lisa D\) Valemid ) 1(6) 1. Vee- ja kanalisatsiooniteenuse hinna kujundamise põhimõtted Aktsiaselts tegevuskulude arvestuse aluseks on auditeeritud ja kinnitatud aastaaruanne. Hinnakujunduse analüüsis kasutatakse Aktsiaseltsi

Rohkem

TELLIJAD Riigikantselei Eesti Arengufond Majandus- ja Kommunikatsiooniministeerium KOOSTAJAD Olavi Grünvald / Finantsakadeemia OÜ Aivo Lokk / Väärtusi

TELLIJAD Riigikantselei Eesti Arengufond Majandus- ja Kommunikatsiooniministeerium KOOSTAJAD Olavi Grünvald / Finantsakadeemia OÜ Aivo Lokk / Väärtusi TELLIJAD Riigikantselei Eesti Arengufond Majandus- ja Kommunikatsiooniministeerium KOOSTAJAD Olavi Grünvald / Finantsakadeemia OÜ Aivo Lokk / Väärtusinsener OÜ Tallinnas 14.04.2014 Uuring Energiamajanduse

Rohkem

VRB 2, VRB 3

VRB 2, VRB 3 Tehniline andmeleht Sadulventiilid (PN 6) VR - tee ventiil, sise- ja väliskeere 3-tee ventiil, sise- ja väliskeere Kirjeldus Omadused Mullikindel konstruktsioon Mehaaniline snepperühendus täiturmootoriga

Rohkem

I klassi õlipüüdur kasutusjuhend

I klassi õlipüüdur kasutusjuhend I-KLASSI ÕLIPÜÜDURITE PAIGALDUS- JA HOOLDUSJUHEND PÜÜDURI DEFINITSIOON JPR -i õlipüüdurite ülesandeks on sadevee või tööstusliku heitvee puhastamine heljumist ja õlijääkproduktidest. Püüduri ülesehitus

Rohkem

28 29

28 29 28 29 CARGO TIPPER KÕRGE VÕIMEKUS MADAL RASKUSKESE Iga BJT haagis on konstrueeritud ühte eesmärki silmas pidades - pakkuda teile parimat. Haagised on valmistatud vastavalt klientide tagasisidele, lähtudes

Rohkem

Hoia oma arvuti turvaline ja kiire 1.Leia start nupust alustades Juhtpaneel 2.Juhtpaneeli aadressiribalt leia Kõik juhtpaneeli üksused 3.Avanenud tööa

Hoia oma arvuti turvaline ja kiire 1.Leia start nupust alustades Juhtpaneel 2.Juhtpaneeli aadressiribalt leia Kõik juhtpaneeli üksused 3.Avanenud tööa Hoia oma arvuti turvaline ja kiire 1.Leia start nupust alustades Juhtpaneel 2.Juhtpaneeli aadressiribalt leia Kõik juhtpaneeli üksused 3.Avanenud tööaknas leia Windows Update 4.Lase arvutil kontrollida

Rohkem

7 KODEERIMISTEOORIA 7.1 Sissejuhatus Me vaatleme teadete edastamist läbi kanali, mis sisaldab müra ja võib seetõttu moonutada lähteteadet. Lähteteade

7 KODEERIMISTEOORIA 7.1 Sissejuhatus Me vaatleme teadete edastamist läbi kanali, mis sisaldab müra ja võib seetõttu moonutada lähteteadet. Lähteteade 7 KODEERIMISTEOORIA 7.1 Sissejuhatus Me vaatleme teadete edastamist läbi kanali, mis sisaldab müra ja võib seetõttu moonutada lähteteadet. Lähteteade kodeeritakse, st esitatakse sümbolite kujul, edastatakse

Rohkem

PAIGALDUSJUHEND DUŠINURK VESTA 1. Enne paigaldustööde alustamist veenduge, et elektrikaablid, veetorud vms ei jääks kruviaukude alla! 2. Puhastage sei

PAIGALDUSJUHEND DUŠINURK VESTA 1. Enne paigaldustööde alustamist veenduge, et elektrikaablid, veetorud vms ei jääks kruviaukude alla! 2. Puhastage sei PAIGALDUSJUHEND DUŠINURK VESTA 1. Enne paigaldustööde alustamist veenduge, et elektrikaablid, veetorud vms ei jääks kruviaukude alla! 2. Puhastage seinad ja põrand enne dušinurga paigaldamist! 3. Kasutage

Rohkem

Pythoni Turtle moodul ja Scratchi värvilisem pool Plaan Isikukoodi kontrollnumbri leidmine vaatame üle lahenduse kontrollnumbri leimiseks. Pythoni joo

Pythoni Turtle moodul ja Scratchi värvilisem pool Plaan Isikukoodi kontrollnumbri leidmine vaatame üle lahenduse kontrollnumbri leimiseks. Pythoni joo Pythoni Turtle moodul ja Scratchi värvilisem pool Plaan Isikukoodi kontrollnumbri leidmine vaatame üle lahenduse kontrollnumbri leimiseks. Pythoni joonistamise võimalused Turtle mooduli abil. Scratchi

Rohkem

Tants on loodud 1985.aasta tantsupeoks Muusika Lepo Sumra Koreograafia Helju Mikkel koostöös Lille- Astra Arraste ja "Sõlesepad" tantsurühma meestega.

Tants on loodud 1985.aasta tantsupeoks Muusika Lepo Sumra Koreograafia Helju Mikkel koostöös Lille- Astra Arraste ja Sõlesepad tantsurühma meestega. Tants on loodud 1985.aasta tantsupeoks Muusika Lepo Sumra Koreograafia Helju Mikkel koostöös Lille- Astra Arraste ja "Sõlesepad" tantsurühma meestega. 2019.aasta tantsupeoks täpsustused ja täiendused tehtud

Rohkem

PIKSELOITS Täpsustused 15.oktoobri 2018 seisuga Tants on loodud 1985.aasta tantsupeoks Muusika Lepo Sumra Koreograafia Helju Mikkel koostöös Lille- As

PIKSELOITS Täpsustused 15.oktoobri 2018 seisuga Tants on loodud 1985.aasta tantsupeoks Muusika Lepo Sumra Koreograafia Helju Mikkel koostöös Lille- As PIKSELOITS Täpsustused 15.oktoobri 2018 seisuga Tants on loodud 1985.aasta tantsupeoks Muusika Lepo Sumra Koreograafia Helju Mikkel koostöös Lille- Astra Arraste ja "Sõlesepad" tantsurühma meestega. 2019.aasta

Rohkem

Gyproc [Compatibility Mode]

Gyproc [Compatibility Mode] Gyproc Ardo Aolaid Saint-Gobain Ehitustooted AS 1 1. Roller Coating tehnoloogia 2. Gyproc 4 PRO 3. GypSteel teraskarkassid 4. AquaBead nurgakaitse 5. Gyproc tuuletõkked ja fassaadilahendused 6. Joonised

Rohkem

Lisa I_Müra modelleerimine

Lisa I_Müra modelleerimine LISA I MÜRA MODELLEERIMINE Lähteandmed ja metoodika Lähteandmetena kasutatakse AS K-Projekt poolt koostatud võimalikke eskiislahendusi (trassivariandid A ja B) ning liiklusprognoosi aastaks 2025. Kuna

Rohkem

Microsoft Word - Toetuste veebikaardi juhend

Microsoft Word - Toetuste veebikaardi juhend Toetuste veebikaardi juhend Toetuste veebikaardi ülesehitus Joonis 1 Toetuste veebikaardi vaade Toetuste veebikaardi vaade jaguneb tinglikult kaheks: 1) Statistika valikute osa 2) Kaardiaken Statistika

Rohkem

VKE definitsioon

VKE definitsioon Väike- ja keskmise suurusega ettevõtete (VKE) definitsioon vastavalt Euroopa Komisjoni määruse 364/2004/EÜ Lisa 1-le. 1. Esiteks tuleb välja selgitada, kas tegemist on ettevõttega. Kõige pealt on VKE-na

Rohkem

Andmed arvuti mälus Bitid ja baidid

Andmed arvuti mälus Bitid ja baidid Andmed arvuti mälus Bitid ja baidid A bit about bit Bitt, (ingl k bit) on info mõõtmise ühik, tuleb mõistest binary digit nö kahendarv kahe võimaliku väärtusega 0 ja 1. Saab näidata kahte võimalikku olekut

Rohkem

ArcGIS Online Konto loomine Veebikaardi loomine Rakenduste tegemine - esitlus

ArcGIS Online Konto loomine Veebikaardi loomine Rakenduste tegemine - esitlus PILVI TAUER Tallinna Tehnikagümnaasium ArcGIS Online 1.Konto loomine 2.Veebikaardi loomine 3.Rakenduste tegemine - esitlus Avaliku konto loomine Ava ArcGIS Online keskkond http://www.arcgis.com/ ning logi

Rohkem

NR-2.CDR

NR-2.CDR 2. Sõidutee on koht, kus sõidavad sõidukid. Jalakäija jaoks on kõnnitee. Kõnnitee paikneb tavaliselt mõlemal pool sõiduteed. Kõige ohutum on sõiduteed ületada seal, kus on jalakäijate tunnel, valgusfoor

Rohkem

Microsoft Word - Qualitätskriterien 011 Frami+Zubehör.doc

Microsoft Word - Qualitätskriterien 011 Frami+Zubehör.doc 10/2002 Kvaliteedi kriteeriumid Doka rendiraketisele Doka seinapaneel Frami ja lisatarvikud 1 Sissejuhatus Järgnevad kvaliteedi kriteeriumid on Doka rendimaterjali väljastamise ja tagastamise aluseks.

Rohkem

EDL Liiga reeglid 1. ÜLDSÄTTED 1.1. EDL Liiga toimub individuaalse arvestuse alusel, kus mängijad on jagatud hooaja EDL Liiga tulemuste põhj

EDL Liiga reeglid 1. ÜLDSÄTTED 1.1. EDL Liiga toimub individuaalse arvestuse alusel, kus mängijad on jagatud hooaja EDL Liiga tulemuste põhj EDL Liiga reeglid 1. ÜLDSÄTTED 1.1. EDL Liiga toimub individuaalse arvestuse alusel, kus mängijad on jagatud hooaja 2017-2018 EDL Liiga tulemuste põhjal nelja liigasse. a. Premium Liiga (9 osalejat) b.

Rohkem

loeng7.key

loeng7.key Grammatikate elustamine JFLAPiga Vesal Vojdani (TÜ Arvutiteaduse Instituut) Otse Elust: Java Spec https://docs.oracle.com/javase/specs/jls/se8/html/ jls-14.html#jls-14.9 Kodutöö (2. nädalat) 1. Avaldise

Rohkem

Kivikonstruktsioonid, loeng 8

Kivikonstruktsioonid, loeng 8 Kivikonstruktsioonid Loengukonspekt V. Voltri III osa Täiendatud 2015 Koostas V.Voltri 81 Sisukord 9. Hoonete konstruktiivsed elemendid ja sõlmed... 83 9.1 Sillused... 83 9.1.1 Monteeritavad sillused...

Rohkem

Ecophon Hygiene Meditec A C1 Ecophon Hygiene Meditec A C1 on helineelav ripplaesüsteem kohtadesse, kus regulaarne desinfektsioon ja/või puhastamine on

Ecophon Hygiene Meditec A C1 Ecophon Hygiene Meditec A C1 on helineelav ripplaesüsteem kohtadesse, kus regulaarne desinfektsioon ja/või puhastamine on Ecophon Hygiene Meditec A C1 Ecophon Hygiene Meditec A C1 on helineelav ripplaesüsteem kohtadesse, kus regulaarne desinfektsioon ja/või puhastamine on vajalik. Sobib kuiva keskkonda. Kasutuskoha näited:

Rohkem

6

6 TALLINNA ÕISMÄE GÜMNAASIUMI ÕPPESUUNDADE KIRJELDUSED JA NENDE TUNNIJAOTUSPLAAN GÜMNAASIUMIS Õppesuundade kirjeldused Kool on valikkursustest kujundanud õppesuunad, võimaldades õppe kahes õppesuunas. Gümnaasiumi

Rohkem

Programmi Pattern kasutusjuhend

Programmi Pattern kasutusjuhend 6.. VEKTOR. TEHTE VEKTORITEG Vektoriks nimetatakse suunatud sirglõiku. 6... VEKTORI MÕISTE rvudega iseloomustatakse paljusid suurusi. Mõne suuruse määramiseks piisa ühest arvust ja mõõtühikust. Näiteks

Rohkem

VL1_praks2_2009s

VL1_praks2_2009s Biomeetria praks 2 Illustreeritud (mittetäielik) tööjuhend Eeltöö 1. Avage MS Excel is oma kursuse ankeedivastuseid sisaldav andmestik (see, mida 1. praktikumiski analüüsisite), 2. nimetage Sheet3 ümber

Rohkem

Eesti koolinoorte LIII matemaatikaolümpiaad 28. jaanuar 2006 Piirkonnavoor Hindamisjuhised Lp hindaja! 1. Juhime Teie tähelepanu sellele, et alljärgne

Eesti koolinoorte LIII matemaatikaolümpiaad 28. jaanuar 2006 Piirkonnavoor Hindamisjuhised Lp hindaja! 1. Juhime Teie tähelepanu sellele, et alljärgne Eesti koolinoorte LIII matemaatikaolümpiaad 28. jaanuar 2006 Piirkonnavoor Hindamisjuhised Lp hindaja! 1. Juhime Teie tähelepanu sellele, et alljärgnevas on 7. 9. klasside olümpiaadi I osa (testi) ning

Rohkem

HWU_AccountingAdvanced_October2006_EST

HWU_AccountingAdvanced_October2006_EST 10. Kulude periodiseerimine Simulatsioone (vt pt 5) kasutatakse ka juhul, kui soovitakse mõnd saadud ostuarvet pikemas perioodis kulusse kanda (nt rendiarve terve aasta kohta). Selleks tuleb koostada erinevad

Rohkem