Microsoft Word - Sobitusahelate_projekteerimine.doc

Suurus: px
Alustada lehe näitamist:

Download "Microsoft Word - Sobitusahelate_projekteerimine.doc"

Väljavõte

1 Sobitusahelate projekteerimine Vaatleme 3 erinevat meetodit: koondparameetitega elementidel sobitamine häälestusribaga sobitamine veerandlainelõiguga sobitamine Sobitust võib vaadelda koormustakistuse sobitamisena lainejuhiga, mille lainetakistus on

2 Kui -I reaalosa on -st erinev ( näiteks z = = 7 j5, Re( z ) = 7 ), on eelpool toodud sobitusmeetoditega sobitamine võimalik Kitsaribalist sobitust on lihtne saavutada - elemendise ahelaga, laiaribaliseks sobitamiseks sobb rohkem filtrite kasutus Koondparameetritega sobitusahelad Koormustakistus Y = = G jb ) on = R j (vastav juhtivus sobitatav kahe reaktiivse elemendiga -ahelaga Kui normeeritud takistuse r <, tuleb kasutada topoloogiat : Kui r >, siis topoloogiat : Topoloogia reaktiivsused leitakse valemitega:

3 B ( R ) = ± R, ( R ) R = ± ± märke tuleb vaadelda mõlema valemi ees samaselt St valemi -> valemi ning sama miinustega Positiivne ja negatiivne B vastab induktiivsusele, negatiivne ja positiivne B vastab mahtuvusele Mida väiksemad on ja B, seda laiaribalisem on sobitus, samuti sõltub ja B valik sellest, kas tahetakse sobitusahelale MP, KP või ühtlase ülekandega karakteristikut Topoloogiale vastavad reaktiivsused: B ± R R =, R = B R BR R Kasutades 3 elemendilist sobitust nn, T-ahelat ja π -ahelat, saab juurde paindlikkust ahela projekteerimiseks Näiteks võib T-ahela rööpreaktiivsus B lüüa kahte ossa (B B =B) ja nii, et saab kasutada projekteerimisel - ahelat Mõlemad ahelad sobitatakse eralldi takistusega R, mille väärtuse võib valida vabalt, peaasi, et R ja on väiksemad kui R π -ahela korral peavad R ja on suuremad kui R

4 Sobitusribaga sobitamine Suvalist koormustakistust saab sobitada rööpliiniga iin realiseeritakse kas avatud või lühistatud liinina Rööpliin ühendatakse liinile kohta, kus normeeritud aktiivtakistus r= Rööpliini reaktiivsus kompenseerib koormuse reaktiivsuse, mis tagab sobituse Rööpliini kaugus koormusest leitakse valemist: tan β d = π β =, λ kui R ± Kui R =, siis R [( R ) ] R / Seega saadakse lahendust λ d = ja 4 tan β d = Soitusriba reaktiivjuhtivus avaldub: ( t)( t) R t B =, R t t = tan βd [ ( ) ]

5 Kui sobitusriba lainetekistus on sama liiniga, st Y = tühiliini pikkus olema:, peab sobitava l O B arctan λ =, π Y ühisliini pikkus on: l S Y arctan λ = π B Eelnevast R juhul saadud kahest lahendist tuleb valida see, mis annab lühemad d ja l, sest siis saadakse laiemas sagedusvahemikus parem sobitus Ühe liiniga sobitades tuleb koormuse muutused muuta ka lülituskaugust d Kasutades rööpliini, saab nende asukohad fikseerida ja erinevate koormuste sobitamine toimub rööpliinide pikkuste muutmisega Oletades, et liin d paikneb koormusel: Koormuse Y = G jb sobitamiseks lisatakse juhtivusele y reaktiivjuhtivus b, nii et saadud juhtivus y paikneks ringi jb nihutamisel pikkuse d võrra saadud ringil Kuna liin d paikneb saadud ringist samuti kaugusel d, siis satub y ringile jb (punkt y ) ja liini d pikkuse valikuga realiseeritakse reaktiivjuhtivus, mis kompenseerib y oleva reaktiivjuhtivuse ja seega tekitab sobituse

6 iinide reaktiivjuhtivused on võimalik leida ka valemitest: B = B Y ± ( t ) t G Y G t, ( t ) ± Y YG Gt GY B = Gt Saadud juhtivuste kaudu leitakse nüüd liinide pikkused -e liiniga sobitamisel tekib juhtivuste piirkond, mida ei ole võimalik konkreetse d korral sobitada, sest puudub selline reaktiivjuhtivus, mille lisamisel transformeeruks y nihutatud ringile Sobitada saab juhtivusi, mille reaalosa on: g < sin βd λ Kui d või d siis nn keelatud ala väheneb kuni nullini, kuid λ 3λ sobitus muutub väga kitsaribaliseks Tavaliselt valitakse d = või d =, 8 8 sest siis saab sobitada koormuseid, mille g < Suurte reaktiivjuhtivuste loomist piiravad ka liinide kaod Kolme fikseeritud rööpliiniga on võimalik sobitada kõiki koormusi

7 Veerandlainetransformaator Sellise sobitusega on lihtne sobitada reaalseid koormuseid Kui koormus on kompleksne, tuleb ta kõigepealt sobiva pikkusega lainejuhiga või häälestusribaga muuta reaalseks Kui =R, veerandlainetransformaatori lainetakistus on = R ja λ pikkus in l = sagedusel f, siis saadud skeemi peegeldusteguri magnituud 4 on: R = R 4R tan β ( ) l sagedussõltuvusest on näha, et sobitus on perioodiline, ehk parima sobituse ( = ) saame sagedustel f, 3f, 5f Jättes liini laiuse muutused arvestamata, on näha, et mida suurem erinevus koormustakistuse R ja lainetakistuse vahel on, seda kitsaribalisemaks muutub sobitus Ribalaiuse, mille korral peegeldustegur on väiksem kui m, saab ligikaudu määrata seosest:

8 Δ arccos 4 R R f f m m π isaks sellele tuleb aga komplekse koormuse korral arvestada reaalseks koormuseks muundaja mõju, mis omakorda muudab ribalaiuse väiksemaks Mitmeelemendilised sobitusahelad Sobitusahela ribalaiust saab suurendada, kui lülitada mitu veerandlainetransformaatorit järjestikku Vaatleme ühelülilist sobitajat iini üleminekukohtades tekkiv peegeldused on: =, = iinis sünnib lõpmatu hulk peegeldusi mille summeerimine annab sisendpeegeldusteguriks: l j l j e e β β = Kui erinevused, ja, vahek on väikesed, siis on ka peegeldustegurid väikesed ja <<, siis saab teha lihtsustuse: l j e β Olgu N-elemendiline sobitusahel ja kõikide elementide pikkus on l

9 Eeldades, et elementide lainetakistus k kasvab (või kahaneb) monotoonselt ning on reaalne, siis peegeldustegurid k ( k =,, N = ) k k =,, N k k On reaalsed ja samamärgilised Sisendi peegeldustegur, arvestades eelnevat lihtsustust, tuleb seega jβl 4 jβl Njβl = e e Ne Kui sobitusahel on sümmeetriline nii, et peegeldustegur avaldub = e = e jnβl jnβl = N, = N K, siis jnβl jnβl j( N ) βl j( N ) βl 4 jβl [( ( e e ) ( e e ) e ] [ cos Nβl cos( N ) βl cos( N k) βl ] Viimane liidetav on N kui N on paarisarva ja cos βl, kui N on paaritu Valides sobivad k -d ja piisavalt suure N-I, saab realiseerida vajalikke sobituse sageduskarakteristikuid Maksimaalselt lameda karakteristiku saab, kui k valida seosest: N! N N k =, kui < < ( N k)! k! k = Saadud k kaudu leitakse vajalikud lainetakistused k Suhteline ribalaius avaldub:

10 N m f f arccos 4 Δ π Tšebõševi karakteristikuga sobitusahela saab, kui valemis olevad koefitsendid valida tšebõševi polünoomi koefitsentidena Ribalaiuseks saadakse π m f f Θ Δ 4 Pääruriba alumisele sagedusele vastav elektriline pikkus m l Θ = β saadakse valemist: = Θ cosh cosh cos ar N m m Sujuvad ahelad Kui N kasvab, siis muutub mitmeastmeline sobitusahel ebapraktiliselt pikaks Ahelaid saab realiseerida ka sujuva takistuse muutumisega Sujuvat ahelat saab vaadata koonevat suurest arvust väikestest takistuste muutustest

11 d Takistuse muutusel -st d-ks tekib peegeldus d d Võttes seoses dz f dz peegeldusteguri muutuseks: [ ln f ( z) ] df ( z) = funktsiooniks ( ) ( z) f z =, saame ( z) d ln d = dz dz Kogu ahela sisendi peegeldustegur saadakse, kui summeerida kõik d piki sobitusliini, arvestades veerandlaine trafo arvutuses tehtud lihtsustust jβl e : ( z) dz j z d = e β ln dz Takistuse sujuvat muutust saab realiseerida mitmeti Näiteks eksponentsiaalne muutus: az ( z) = e, z

12 Peegeldustegur = kui liini elektriline pikkus βl = nπ ehk nλ = Mida pikem liin, seda väiksem on keskmine peegeldustegur Esimese peegeldusteguri tipu väärtus on % -se el pikkusega oleva liini peegeldusteguri väärtusest Kolmnurgakujulise muutuse all tuleb mõista, et kujuline: d dz ( ) z ln on kolmnurga Peegeldusteguri nullkohad asuvad punktides, kus liini elektriline pikkus on n π Seega liin on võrreldes eksponentsiaalsega pikem, kuid tipp on vaid 5% -se el pikkusega liiniga oleva peegeldusteguriga võrreldes Suure- ja väikeseimpedantsilise liiniga sobitamine

13 Veerandlainetrafo sobis hästi reaalse koormuse sobitamiseks Komplekse koormuse = R j saab liiniga sobitada liiniga, mille lainetakistus avaldub: = R R ning pikkus l: l ( R ) = arctan λ π Siiski saab sellise liiniga sobitada vaid % Smithi diagrammi pindalast, kus = 5Ω ja = Ω Sobitatavate impedantside ala saab suurendada, kui ja vahele lülitada liini, millest üks on väikese lainetakistusega (st lai liin) ja teine suure lainetakistusega (st kitsas liin) = Ω korral saab nii sobitada üle 75% Smithi diagrammi pinnast Suurem lainetakistus on h, väiksem l nii, et l < < h Sobitatavad koormustakistused sõltuvad suhetest h m = ja n = l Kui m=n=, siis on sobitatavad piirkonnad:

14 Punktid P,Q,R, ja S: P =, Q =, R = m, s m n m n n = Kui z =j, siis erinevate tehnikatega saadavad sobitused: Olgu z = j Eelnenud Smithi diagrammilt selgub, et sellise koormuse sobitamiseks peab koormusele lähem sobitusliini olema lainetakistusega h = ning teise liini lainetakistus peab olema l =

15 ' z Kõigepealt normeeritakse h -ga: z = = 5 j 5 h äbi selle takistuse joonistatud ring C Smithi diagrammil sisaldab kõiki koormuse impedantse, milleks koormus võib kõrge- ja madalaoomilise liini ühenduskohta transformeeruda Renormeerides saadud ringi reaalteljega lõikepunktid A ja B l -ga ( z * h / l ) saame punktid A ja B, mis moodustavad uue ringi C Punkt D on l -ga normeeritud sisendliini impedants ( = ) iikudes koormuse poole kuni punktini E, mis asub l ringil C, leiame pikkuse l l See on madalaoomise liini pikkus E -le vastab ringil punkt E, mille kaugus punktist z annab kõrgeoomilise liini pikkuse

vv05lah.dvi

vv05lah.dvi IMO 05 Eesti võistkonna valikvõistlus 3. 4. aprill 005 Lahendused ja vastused Esimene päev 1. Vastus: π. Vaatleme esiteks juhtu, kus ringjooned c 1 ja c asuvad sirgest l samal pool (joonis 1). Olgu O 1

Rohkem

lvk04lah.dvi

lvk04lah.dvi Lahtine matemaatikaülesannete lahendamise võistlus. veebruaril 004. a. Lahendused ja vastused Noorem rühm 1. Vastus: a) jah; b) ei. Lahendus 1. a) Kuna (3m+k) 3 7m 3 +7m k+9mk +k 3 3M +k 3 ning 0 3 0,

Rohkem

Sissejuhatus mehhatroonikasse MHK0120

Sissejuhatus mehhatroonikasse  MHK0120 Sissejuhatus mehhatroonikasse MHK0120 5. nädala loeng Raavo Josepson raavo.josepson@ttu.ee Pöördliikumine Kulgliikumine Kohavektor Ԧr Kiirus Ԧv = d Ԧr dt Kiirendus Ԧa = dv dt Pöördliikumine Pöördenurk

Rohkem

MATEMAATILINE ANALÜÜS I. ESIMESE KONTROLLTÖÖ NÄITEÜLESANDED (1) Leida funktsiooni y = sin x + ln(16 x 2 ) määramispiirkond. (2) Leida funktsiooni y =

MATEMAATILINE ANALÜÜS I. ESIMESE KONTROLLTÖÖ NÄITEÜLESANDED (1) Leida funktsiooni y = sin x + ln(16 x 2 ) määramispiirkond. (2) Leida funktsiooni y = MATEMAATILINE ANALÜÜS I. ESIMESE KONTROLLTÖÖ NÄITEÜLESANDED () Leida funktsiooni y = sin + ln(6 ) määramispiirkond. () Leida funktsiooni y = arcsin( 5 + 5) + 9 määramispiirkond. () Leida funktsiooni määramispiirkond

Rohkem

Treeningvõistlus Balti tee 2014 võistkonnale Tartus, 4. novembril 2014 Vastused ja lahendused 1. Vastus: 15, 18, 45 ja kõik 0-ga lõppevad arvud. Olgu

Treeningvõistlus Balti tee 2014 võistkonnale Tartus, 4. novembril 2014 Vastused ja lahendused 1. Vastus: 15, 18, 45 ja kõik 0-ga lõppevad arvud. Olgu Treeningvõistlus Balti tee 014 võistkonnale Tartus, 4. novembril 014 Vastused ja lahendused 1. Vastus: 15, 18, 45 ja kõik 0-ga lõppevad arvud. Olgu b arvu k üheliste number ning a arv, mille saame arvust

Rohkem

IMO 2000 Eesti võistkonna valikvõistlus Tartus, aprillil a. Ülesannete lahendused Esimene päev 1. Olgu vaadeldavad arvud a 1, a 2, a 3,

IMO 2000 Eesti võistkonna valikvõistlus Tartus, aprillil a. Ülesannete lahendused Esimene päev 1. Olgu vaadeldavad arvud a 1, a 2, a 3, IMO 000 Eesti võistkonna valikvõistlus Tartus, 19. 0. aprillil 000. a. Ülesannete lahendused Esimene päev 1. Olgu vaadeldavad arvud a 1, a, a 3, a 4, a 5. Paneme tähele, et (a 1 + a + a 3 a 4 a 5 ) (a

Rohkem

Slide 1

Slide 1 ERAÜ XVII TALVEPÄEV 2015 Uue põlvkonna LDMOS transistorvõimendid 14.veebruar 2015 Mart Tagasaar, ES2NJ Sissejuhatus Alates 2010.aastast on turule ilmunud uue põlvkonna LDMOS transistorid võimsusega 600-1400W,

Rohkem

Antennide vastastikune takistus

Antennide vastastikune takistus Antennide vastastikune takistus Eelmises peatükis leidsime antenni kiirgustakistuse arvestamata antenni lähedal teisi objekte. Teised objektid, näiteks teised antennielemendid, võivad aga mõjutada antenni

Rohkem

Tarkvaraline raadio Software defined radio (SDR) Jaanus Kalde 2017

Tarkvaraline raadio Software defined radio (SDR) Jaanus Kalde 2017 Tarkvaraline raadio Software defined radio (SDR) Jaanus Kalde 2017 Sissejuhatus Raadiosidest üldiselt Tarkvaraline raadio Kuidas alustada 2 Raadioside Palju siinussignaale õhus Info edastamiseks moduleerid

Rohkem

PIDEVSIGNAALIDE TÖÖTLEMINE

PIDEVSIGNAALIDE TÖÖTLEMINE 5. Lõpliku siirdega filtrid (I) SIGNAALITÖÖTLUS II Loegumaterjal 5 (I/II) Toomas uube I filter omab lõpliku pikkusega diskreetset impulsskaja hi iltri väljudsigaal y o kovolutsioo impulsskajast ja diskreetsest

Rohkem

prakt8.dvi

prakt8.dvi Diskreetne matemaatika 2012 8. praktikum Reimo Palm Praktikumiülesanded 1. Kas järgmised graafid on tasandilised? a) b) Lahendus. a) Jah. Vahetades kahe parempoolse tipu asukohad, saame graafi joonistada

Rohkem

raamat5_2013.pdf

raamat5_2013.pdf Peatükk 5 Prognoosiintervall ja Usaldusintervall 5.1 Prognoosiintervall Unustame hetkeks populatsiooni parameetrite hindamise ja pöördume tagasi üksikvaatluste juurde. On raske ennustada, milline on huvipakkuva

Rohkem

III teema

III teema KORDAMINE RIIGIEKSAMIKS IV TRIGONOMEETRIA ) põhiseosed sin α + cos α = sin tanα = cos cos cotα = sin + tan = cos tanα cotα = ) trigonomeetriliste funktsioonide täpsed väärtused α 5 6 9 sin α cos α tan

Rohkem

ma1p1.dvi

ma1p1.dvi Peatükk 1 Funktsioonid ja nendega seotud mõisted 1.1 Reaalarvud ja Arvtelg. Absoluutväärtuse mõiste. Reaalarvudest koosnevad hulgad. Enne arvu mõiste käsitlemist toome sisse mõned hulkadega seotud tähised.

Rohkem

Matemaatilised meetodid loodusteadustes. I Kontrolltöö I järeltöö I variant 1. On antud neli vektorit: a = (2; 1; 0), b = ( 2; 1; 2), c = (1; 0; 2), d

Matemaatilised meetodid loodusteadustes. I Kontrolltöö I järeltöö I variant 1. On antud neli vektorit: a = (2; 1; 0), b = ( 2; 1; 2), c = (1; 0; 2), d Matemaatilised meetodid loodusteadustes I Kontrolltöö I järeltöö I variant On antud neli vektorit: a (; ; ), b ( ; ; ), c (; ; ), d (; ; ) Leida vektorite a ja b vaheline nurk α ning vekoritele a, b ja

Rohkem

Microsoft Word - Mesi, kestvuskatsed, doc

Microsoft Word - Mesi, kestvuskatsed, doc MEEPROOVIDE KESTVUSKATSED Tallinn 2017 Töö nimetus: Meeproovide kestvuskatsed. Töö autorid: Anna Aunap Töö tellija: Eesti Mesinike Liit Töö teostaja: Marja 4D Tallinn, 10617 Tel. 6112 900 Fax. 6112 901

Rohkem

DE_loeng5

DE_loeng5 Digitaalelektroonika V loeng loogikalülitused KMOP transistoridega meeldetuletus loogikalülitused TTL baasil baaslülitus inverteri tunnusjooned ja hilistumine LS lülitus kolme olekuga TTL ja avatud kollektoriga

Rohkem

Polünoomi juured Juure definitsioon ja Bézout teoreem Vaadelgem polünoomi kus K on mingi korpus. f = a 0 x n + a 1 x n a n 1 x

Polünoomi juured Juure definitsioon ja Bézout teoreem Vaadelgem polünoomi kus K on mingi korpus. f = a 0 x n + a 1 x n a n 1 x 1 5.5. Polünoomi juured 5.5.1. Juure definitsioon ja Bézout teoreem Vaadelgem polünoomi kus K on mingi korpus. f = a 0 x n + a 1 x n 1 +... + a n 1 x + a n K[x], (1) Definitsioon 1. Olgu c K. Polünoomi

Rohkem

Tehniline andmeleht Sadulventiilid (PN 16) VRG 2 2-tee ventiil, väliskeermega VRG 3 3-tee ventiil, väliskeermega Kirjeldus Ventiilid on kasutatavad ko

Tehniline andmeleht Sadulventiilid (PN 16) VRG 2 2-tee ventiil, väliskeermega VRG 3 3-tee ventiil, väliskeermega Kirjeldus Ventiilid on kasutatavad ko Tehniline andmeleht Sadulventiilid (PN 16) VRG 2 2-tee ventiil, väliskeermega VRG 3 3-tee ventiil, väliskeermega Kirjeldus Ventiilid on kasutatavad koos AMV(E) 335, AMV(E) 435 ja AMV(E) 438 SU täiturmootoritega.

Rohkem

Matemaatiline analüüs III 1 4. Diferentseeruvad funktsioonid 1. Diferentseeruvus antud punktis. Olgu funktsiooni f : D R määramispiirkond D R selles p

Matemaatiline analüüs III 1 4. Diferentseeruvad funktsioonid 1. Diferentseeruvus antud punktis. Olgu funktsiooni f : D R määramispiirkond D R selles p Matemaatiline analüüs III 4. Diferentseeruvad funktsioonid. Diferentseeruvus antud punktis. Olgu funktsiooni f : D R määramispiirkond D R selles paragravis mingi (lõplik või lõpmatu) intervall ning olgu

Rohkem

Raadioamatööride antennid

Raadioamatööride antennid Raadioamatööride antennid Sissejuhatus teemasse Moto: püüdes haarata haaramatut (Kozma Prutkovi parafraseerides) Teolan Teo Tomson, ES1AO ERAÜ talvepäev Mustamäel, 23.01 2016 Idealiseeritud elektrijuht

Rohkem

VRG 2, VRG 3

VRG 2, VRG 3 Tehniline andmeleht Sadulventiilid (PN 16) 2-tee ventiil, väliskeermega 3-tee ventiil, väliskeermega Kirjeldus Omadused Mullikindel konstruktsioon Mehhaaniline snepperühendus täiturmootoriga MV(E) 335,

Rohkem

Microsoft Word - 56ylesanded1415_lõppvoor

Microsoft Word - 56ylesanded1415_lõppvoor 1. 1) Iga tärnike tuleb asendada ühe numbriga nii, et tehe oleks õige. (Kolmekohaline arv on korrutatud ühekohalise arvuga ja tulemuseks on neljakohaline arv.) * * 3 * = 2 * 1 5 Kas on õige, et nii on

Rohkem

Majandus- ja kommunikatsiooniministri 10. aprill a määrus nr 26 Avaliku konkursi läbiviimise kord, nõuded ja tingimused sageduslubade andmiseks

Majandus- ja kommunikatsiooniministri 10. aprill a määrus nr 26 Avaliku konkursi läbiviimise kord, nõuded ja tingimused sageduslubade andmiseks Majandus- ja kommunikatsiooniministri 10. aprill 2013. a määrus nr 26 Avaliku konkursi läbiviimise kord, nõuded ja tingimused sageduslubade andmiseks maapealsetes süsteemides üldkasutatava elektroonilise

Rohkem

19. Marek Kolk, Kõrgem matemaatika, Tartu Ülikool, Arvridade koonduvustunnused Sisukord 19 Arvridade koonduvustunnused Vahelduvat

19. Marek Kolk, Kõrgem matemaatika, Tartu Ülikool, Arvridade koonduvustunnused Sisukord 19 Arvridade koonduvustunnused Vahelduvat 9. Marek Kolk, Kõrgem matemaatika, Tartu Ülikool, 203-4. 9 Arvridade koonduvustunnused Sisukord 9 Arvridade koonduvustunnused 23 9. Vahelduvate märkidega read.......................... 24 9.2 Leibniz i

Rohkem

12. Marek Kolk, Kõrgem matemaatika, Tartu Ülikool, Algfunktsioon ja määramata integraal Sisukord 12 Algfunktsioon ja määramata integraal 1

12. Marek Kolk, Kõrgem matemaatika, Tartu Ülikool, Algfunktsioon ja määramata integraal Sisukord 12 Algfunktsioon ja määramata integraal 1 2. Marek Kolk, Kõrgem matemaatika, Tartu Ülikool, 203-. 2 Algfunktsioon ja määramata integraal Sisukord 2 Algfunktsioon ja määramata integraal 9 2. Sissejuhatus................................... 50 2.2

Rohkem

Matemaatiline analüüs IV 1 3. Mitme muutuja funktsioonide diferentseerimine 1. Mitme muutuja funktsiooni osatuletised Üleminekul ühe muutuja funktsioo

Matemaatiline analüüs IV 1 3. Mitme muutuja funktsioonide diferentseerimine 1. Mitme muutuja funktsiooni osatuletised Üleminekul ühe muutuja funktsioo Matemaatiline analüüs IV 1 3. Mitme muutuja funktsioonide diferentseerimine 1. Mitme muutuja funktsiooni osatuletised Üleminekul üe muutuja funktsioonidelt m muutuja funktsioonidele, kus m, 3,..., kerkib

Rohkem

XV kursus

XV kursus KORDAMINE RIIGIEKSAMIKS VI FUNKTSIOONID JA NENDE GRAAFIKUD. TULETISE RAKENDUSED.. Funktsiooni määramispiirkonna ( X ) moodustavad argumendi () väärtused, mille korral funktsiooni väärtus (y) on eeskirjaga

Rohkem

HCB_hinnakiri2017_kodukale

HCB_hinnakiri2017_kodukale Betooni baashinnakiri Hinnakiri kehtib alates 01.04.2016 Töödeldavus S3 Töödeldavus S4 / m 3 /m 3 km-ga / m 3 /m 3 km-ga C 8/10 69 83 71 85 C 12/15 73 88 75 90 C 16/20 75 90 77 92 C 20/25 78 94 80 96 C

Rohkem

VRB 2, VRB 3

VRB 2, VRB 3 Tehniline andmeleht Sadulventiilid (PN 6) VR - tee ventiil, sise- ja väliskeere 3-tee ventiil, sise- ja väliskeere Kirjeldus Omadused Mullikindel konstruktsioon Mehaaniline snepperühendus täiturmootoriga

Rohkem

efo03v2pkl.dvi

efo03v2pkl.dvi Eesti koolinoorte 50. füüsikaolümpiaad 1. veebruar 2003. a. Piirkondlik voor Põhikooli ülesannete lahendused NB! Käesoleval lahendustelehel on toodud iga ülesande üks õige lahenduskäik. Kõik alternatiivsed

Rohkem

efo09v2pke.dvi

efo09v2pke.dvi Eesti koolinoorte 56. füüsikaolümpiaad 17. jaanuar 2009. a. Piirkondlik voor. Põhikooli ülesanded 1. (VÄRVITILGAD LAUAL) Ühtlaselt ja sirgjooneliselt liikuva horisontaalse laua kohal on kaks paigalseisvat

Rohkem

Tala dimensioonimine vildakpaindel

Tala dimensioonimine vildakpaindel Tala dimensioonimine vildakpaindel Ülesanne Joonisel 9 kujutatud okaspuidust konsool on koormatud vertikaaltasandis ühtlase lauskoormusega p ning varda teljega risti mõjuva kaldjõuga (-jõududega) F =pl.

Rohkem

P9_10 estonian.cdr

P9_10 estonian.cdr Registreerige oma toode ja saage abi kodulehelt www.philips.com/welcome P9/10 Eestikeelne kasutusjuhend 2 Ühendage P9 kõlar Bluetooth ühenduse kaudu oma Bluetooth seadmega, nagu näiteks ipadiga, iphone'iga,

Rohkem

Kasutusjuhend Dragon Winch vintsile DWM, DWH, DWT seeria Sisukord Üldised ohutusnõuded... 3 Vintsimise ohutusnõuded... 3 Kasulik teada... 4 Vintsimise

Kasutusjuhend Dragon Winch vintsile DWM, DWH, DWT seeria Sisukord Üldised ohutusnõuded... 3 Vintsimise ohutusnõuded... 3 Kasulik teada... 4 Vintsimise Kasutusjuhend Dragon Winch vintsile DWM, DWH, DWT seeria Sisukord Üldised ohutusnõuded... 3 Vintsimise ohutusnõuded... 3 Kasulik teada... 4 Vintsimisel on hea teada... 5 Vintsi hooldus... 6 Garantii...

Rohkem

Ruutvormid Denitsioon 1. P n Ütleme, et avaldis i;j=1 a ijx i x j ; kus a ij = a ji ; a ij 2 K ja K on korpus, on ruutvorm üle korpuse K muutujate x 1

Ruutvormid Denitsioon 1. P n Ütleme, et avaldis i;j=1 a ijx i x j ; kus a ij = a ji ; a ij 2 K ja K on korpus, on ruutvorm üle korpuse K muutujate x 1 Ruutvormid Denitsioon. P n Ütleme, et avaldis i;j= a ijx i x j ; kus a ij = a ji ; a ij K ja K on korus, on ruutvorm üle koruse K muutujate x ;;x n suhtes. Maatriksit =(a ij ) nimetame selle ruutvormi

Rohkem

3D mänguarenduse kursus (MTAT ) Loeng 3 Jaanus Uri 2013

3D mänguarenduse kursus (MTAT ) Loeng 3 Jaanus Uri 2013 3D mänguarenduse kursus (MTAT.03.283) Loeng 3 Jaanus Uri 2013 Teemad Tee leidmine ja navigatsioon Andmete protseduuriline genereerimine Projektijuhtimine Tee leidmine Navigatsiooni võrgustik (navigation

Rohkem

HCB_hinnakiri2018_kodukale

HCB_hinnakiri2018_kodukale Betooni baashinnakiri Hinnakiri kehtib alates 01.01.2018 Töödeldavus S3 Töödeldavus S4 / m 3 /m 3 km-ga / m 3 /m 3 km-ga C 8/10 73 87 75 89 C 12/15 77 92 79 94 C 16/20 79 94 81 96 C 20/25 82 98 84 100

Rohkem

Eesti koolinoorte 66. füüsikaolümpiaad 06. aprill a. Vabariiklik voor. Gümnaasiumi ülesannete lahendused 1. (AUTOD) (6 p.) Kuna autod jäävad sei

Eesti koolinoorte 66. füüsikaolümpiaad 06. aprill a. Vabariiklik voor. Gümnaasiumi ülesannete lahendused 1. (AUTOD) (6 p.) Kuna autod jäävad sei Eesti koolinoorte 66. füüsikaolümpiaad 06. aprill 2019. a. Vabariiklik voor. Gümnaasiumi ülesannete lahendused 1. (AUTOD) (6 p.) Kuna autod jäävad seisma samaaegselt, siis läheme ühe ühe autoga seotud

Rohkem

Praks 1

Praks 1 Biomeetria praks 3 Illustreeritud (mittetäielik) tööjuhend Eeltöö 1. Avage MS Excel is oma kursuse ankeedivastuseid sisaldav andmestik, 2. lisage uus tööleht, 3. nimetage see ümber leheküljeks Praks3 ja

Rohkem

ITI Loogika arvutiteaduses

ITI Loogika arvutiteaduses Predikaatloogika Predikaatloogika on lauseloogika tugev laiendus. Predikaatloogikas saab nimetada asju ning rääkida nende omadustest. Väljendusvõimsuselt on predikaatloogika seega oluliselt peenekoelisem

Rohkem

Tõstuksed Aiaväravad Tõkkepuud Automaatika KÄIGUUKSED Käiguuksed on paigaldatavad kõikidele sektsioonuste tüüpidele. Käiguukse saab varustada kas tava

Tõstuksed Aiaväravad Tõkkepuud Automaatika KÄIGUUKSED Käiguuksed on paigaldatavad kõikidele sektsioonuste tüüpidele. Käiguukse saab varustada kas tava KÄIGUUKSED Käiguuksed on paigaldatavad kõikidele sektsioonuste tüüpidele. Käiguukse saab varustada kas tavalise või madala lävepakuga. Soovitav on ukse tellimise ajal käiguukse vajadus ning ning lävepaku

Rohkem

(Microsoft Word - Matsalu Veev\344rk AS aktsion\344ride leping \(Lisa D\) Valemid )

(Microsoft Word - Matsalu Veev\344rk AS aktsion\344ride leping \(Lisa D\) Valemid ) 1(6) 1. Vee- ja kanalisatsiooniteenuse hinna kujundamise põhimõtted Aktsiaselts tegevuskulude arvestuse aluseks on auditeeritud ja kinnitatud aastaaruanne. Hinnakujunduse analüüsis kasutatakse Aktsiaseltsi

Rohkem

Võistlusülesanne Vastutuulelaev Finaal

Võistlusülesanne Vastutuulelaev Finaal Võistlusülesanne Vastutuulelaev Finaal CADrina 2016 võistlusülesannete näol on tegemist tekst-pilt ülesannetega, milliste lahendamiseks ei piisa ainult jooniste ülevaatamisest, vaid lisaks piltidele tuleb

Rohkem

PowerPoint Presentation

PowerPoint Presentation Uued generatsioonid organisatsioonis: Omniva kogemus Kadi Tamkõrv / Personali- ja tugiteenuste valdkonnajuht Omniva on rahvusvaheline logistikaettevõte, kes liigutab kaupu ja informatsiooni Meie haare

Rohkem

Neurovõrgud. Praktikum aprill a. 1 Stohhastilised võrgud Selles praktikumis vaatleme põhilisi stohhastilisi võrke ning nende rakendust k

Neurovõrgud. Praktikum aprill a. 1 Stohhastilised võrgud Selles praktikumis vaatleme põhilisi stohhastilisi võrke ning nende rakendust k Neurovõrgud. Praktikum 11. 29. aprill 2005. a. 1 Stohhastilised võrgud Selles praktikumis vaatleme põhilisi stohhastilisi võrke ning nende rakendust kombinatoorsete optimiseerimisülesannete lahendamiseks.

Rohkem

Väljaandja: Keskkonnaminister Akti liik: määrus Teksti liik: terviktekst Redaktsiooni jõustumise kp: Redaktsiooni kehtivuse lõpp:

Väljaandja: Keskkonnaminister Akti liik: määrus Teksti liik: terviktekst Redaktsiooni jõustumise kp: Redaktsiooni kehtivuse lõpp: Väljaandja: Keskkonnaminister Akti liik: määrus Teksti liik: terviktekst Redaktsiooni jõustumise kp: 0.02.2009 Redaktsiooni kehtivuse lõpp: 3.0.206 Avaldamismärge: Kiirgustegevuses tekkinud radioaktiivsete

Rohkem

Word Pro - digiTUNDkaug.lwp

Word Pro - digiTUNDkaug.lwp / näide: \ neeldumisseadusest x w x y = x tuleneb, et neeldumine toimub ka näiteks avaldises x 2 w x 2 x 5 : x 2 w x 2 x 5 = ( x 2 ) w ( x 2 ) [ x 5 ] = x 2 Digitaalskeemide optimeerimine (lihtsustamine)

Rohkem

elastsus_opetus_2015_ptk5.dvi

elastsus_opetus_2015_ptk5.dvi Peatükk 5 Elastsusteooria tasandülesanne 5.. Tasandülesande mõiste 5-5. Tasandülesande mõiste Selleks, et iseloomustada pingust või deformatsiooni elastse keha punktis kasutatakse peapinge ja peadeformatsiooni

Rohkem

Excel Valemite koostamine (HARJUTUS 3) Selles peatükis vaatame millistest osadest koosnevad valemid ning kuidas panna need Excelis kirja nii, et

Excel Valemite koostamine (HARJUTUS 3) Selles peatükis vaatame millistest osadest koosnevad valemid ning kuidas panna need Excelis kirja nii, et Excel2016 - Valemite koostamine (HARJUTUS 3) Selles peatükis vaatame millistest osadest koosnevad valemid ning kuidas panna need Excelis kirja nii, et programm suudaks anda tulemusi. Mõisted VALEM - s.o

Rohkem

Eesti koolinoorte LIII matemaatikaolümpiaad 28. jaanuar 2006 Piirkonnavoor Hindamisjuhised Lp hindaja! 1. Juhime Teie tähelepanu sellele, et alljärgne

Eesti koolinoorte LIII matemaatikaolümpiaad 28. jaanuar 2006 Piirkonnavoor Hindamisjuhised Lp hindaja! 1. Juhime Teie tähelepanu sellele, et alljärgne Eesti koolinoorte LIII matemaatikaolümpiaad 28. jaanuar 2006 Piirkonnavoor Hindamisjuhised Lp hindaja! 1. Juhime Teie tähelepanu sellele, et alljärgnevas on 7. 9. klasside olümpiaadi I osa (testi) ning

Rohkem

Automaatjuhtimise alused Automaatjuhtimissüsteemi kirjeldamine Loeng 2

Automaatjuhtimise alused Automaatjuhtimissüsteemi kirjeldamine Loeng 2 Automaatjuhtimise alused Automaatjuhtimissüsteemi kirjeldamine Loeng 2 Laplace'i teisendus Diferentsiaalvõrrandite lahendamine ilma tarkvara toeta on keeruline Üheks lahendamisvõtteks on Laplace'i teisendus

Rohkem

Sügis 2018 Kõrgema matemaatika 2. kontrolltöö tagasiside Üle 20 punkti kogus tervelt viis üliõpilast: Robert Johannes Sarap, Enely Ernits, August Luur

Sügis 2018 Kõrgema matemaatika 2. kontrolltöö tagasiside Üle 20 punkti kogus tervelt viis üliõpilast: Robert Johannes Sarap, Enely Ernits, August Luur Sügis 2018 Kõrgema matemaatika 2. kontrolltöö tagasiside Üle 20 punkti kogus tervelt viis üliõpilast: Robert Johannes Sarap, Enely Ernits, August Luure, Urmi Tari ja Miriam Nurm. Ka teistel oli edasiminek

Rohkem

Side

Side SIDE (IRT 90) Loeng Signaalid sidekanalis Teema - signaalid Signaaliülekanne üüsilises kanalies Põhiriba signaal ja selle esius Kisaribalised ja laiaribalised signaalid vs kanalid Häirekindluse agamine

Rohkem

SPORTident Air+

SPORTident Air+ Tarmo Klaar 2012-2013 Esimene koolitus Eestis 2012, Põlvas Ülevaade Uus riistvara Vana tarkvara Proovime kasutada, näited Põhineb hetkel teadaoleval funktsionaalsusel. Tootja ei ole veel lõplikku versiooni

Rohkem

Sideteooria-loeng 01 - kanalimudelid, statistika

Sideteooria-loeng 01 - kanalimudelid, statistika IRT0120 Sideteooria IRT0120 Sideteooria kursuse koduleht: www.lr.ttu.ee/~eriklos/sideteooria põhiõpik: J. Proakis Digital Communications (4th ( 2008 - ed. ed. - 2001; 5th semestri lõpunädalatel teiepoolsete

Rohkem

Tartu Kutsehariduskeskus Teksti sisestamine Suurem osa andmetest saab sisestatud klaviatuuril leiduvate sümbolite abil - tähed, numbrid, kirjavahemärg

Tartu Kutsehariduskeskus Teksti sisestamine Suurem osa andmetest saab sisestatud klaviatuuril leiduvate sümbolite abil - tähed, numbrid, kirjavahemärg Teksti sisestamine Suurem osa andmetest saab sisestatud klaviatuuril leiduvate sümbolite abil - tähed, numbrid, kirjavahemärgid jne. Suurte tähtede sisestamiseks hoia all Shift-klahvi. Kolmandate märkide

Rohkem

loeng7.key

loeng7.key Grammatikate elustamine JFLAPiga Vesal Vojdani (TÜ Arvutiteaduse Instituut) Otse Elust: Java Spec https://docs.oracle.com/javase/specs/jls/se8/html/ jls-14.html#jls-14.9 Kodutöö (2. nädalat) 1. Avaldise

Rohkem

ElVar 3. Keskpingevõrgud.3.1 KPV konfiguratsioon.Slaidid2012

ElVar 3. Keskpingevõrgud.3.1 KPV konfiguratsioon.Slaidid2012 3 Keskpingevõrgud Tekst põhineb raamatu Jaotusvõrgud 4. peatükil 1 3.1 Keskpingevõrkude konfiguratsioon 3.1.2 Jaotusvõrkude liigitus Jaotusvõrke liigitatakse tarbijate iseloomu järgi tööstusvõrkudeks,

Rohkem

I Generaatori mõiste (Java) 1. Variantide läbivaatamine Generaator (ehk generaator-klass) on klass, milles leidub (vähemalt) isendimeetod next(). Kons

I Generaatori mõiste (Java) 1. Variantide läbivaatamine Generaator (ehk generaator-klass) on klass, milles leidub (vähemalt) isendimeetod next(). Kons I Generaatori mõiste (Java) 1. Variantide läbivaatamine Generaator (ehk generaator-klass) on klass, milles leidub (vähemalt) isendimeetod next(). Konstruktorile antakse andmed, mis iseloomustavad mingit

Rohkem

EELNÕU

EELNÕU Keskkonnaministri 4. jaanuari 2007. a määruse nr 2 Vääriselupaiga klassifikaator, valiku juhend, vääriselupaiga kaitseks lepingu sõlmimine ja vääriselupaiga kasutusõiguse arvutamise täpsustatud alused

Rohkem

PowerPoint Presentation

PowerPoint Presentation 12. Traadita kohtvõrk ja hajaspektriside Side IRT3930 Ivo Müürsepp 2 Eksamiajad: Esimene eksamieelne konsultatsioon: T 02.01.2018 kell 10:00 Esimene eksamiaeg: R 05.01.2018 kell 10:00 Teine konsultatsiooniaeg

Rohkem

Microsoft Word - Toetuste veebikaardi juhend

Microsoft Word - Toetuste veebikaardi juhend Toetuste veebikaardi juhend Toetuste veebikaardi ülesehitus Joonis 1 Toetuste veebikaardi vaade Toetuste veebikaardi vaade jaguneb tinglikult kaheks: 1) Statistika valikute osa 2) Kaardiaken Statistika

Rohkem

Infix Operaatorid I Infix operaatorid (näiteks +) ja tüübid (näiteks ->) kirjutatakse argumentide vahele, mitte argumentide ette. Näiteks: 5 + 2, 2*pi

Infix Operaatorid I Infix operaatorid (näiteks +) ja tüübid (näiteks ->) kirjutatakse argumentide vahele, mitte argumentide ette. Näiteks: 5 + 2, 2*pi Infix Operaatorid I Infix operaatorid (näiteks +) ja tüübid (näiteks ->) kirjutatakse argumentide vahele, mitte argumentide ette. Näiteks: 5 + 2, 2*pi*r^2, Float -> Int Infixoperaatori kasutamiseks prefix-vormis

Rohkem

Microsoft PowerPoint - geodb_090507v1.ppt [Read-Only] [Compatibility Mode]

Microsoft PowerPoint - geodb_090507v1.ppt [Read-Only] [Compatibility Mode] Eesti topograafiline andmekogu ja geoandmebaasi põhine topograafiliste andmete uuendamine Olev Veskimäe Topoandmete osakond Maa-amet Sisukord Geoandmebaas Uuendamine Kvaliteedi tagamine Vigade haldamine

Rohkem

Microsoft Word - TM70_SP-MG_kasutusjuhend.docx

Microsoft Word - TM70_SP-MG_kasutusjuhend.docx TM70 Touch-i kasutusjuhend Süsteemid: Magellan ja Spectra SP Põhiekraan Kuupäev/kellaaeg Välis-/sisetemperatuur Süsteemi olek Tsoonid Menüü Info OneScreen Monitoring SpotOn Locator Slaidiesitus Paanika-häire

Rohkem

loogikaYL_netis_2018_NAIDISED.indd

loogikaYL_netis_2018_NAIDISED.indd . Lihtne nagu AB Igas reas ja veerus peavad tähed A, B ja esinema vaid korra. Väljaspool ruudustikku antud tähed näitavad, mis täht on selles suunas esimene. Vastuseks kirjutage ringidesse sattuvad tähed

Rohkem

Ülesanne #5: Käik objektile Kooli ümberkujundamist vajava koha analüüs. Ülesanne #5 juhatab sisse teise poole ülesandeid, mille käigus loovad õpilased

Ülesanne #5: Käik objektile Kooli ümberkujundamist vajava koha analüüs. Ülesanne #5 juhatab sisse teise poole ülesandeid, mille käigus loovad õpilased Ülesanne #5: Käik objektile Kooli ümberkujundamist vajava koha analüüs. Ülesanne #5 juhatab sisse teise poole ülesandeid, mille käigus loovad õpilased oma kujunduse ühele kohale koolis. 5.1 Kohavalik Tiimi

Rohkem

(geomeetria3_0000.eps)

(geomeetria3_0000.eps) Analüütilise geomeetria praktikum III L. Tuulmets Tartu 1980 3 4 Eessõna Käesolev analüütilise geomeetria praktikum on koostatud eeskätt TRÜ matemaatikateaduskonna vajadusi arvestades ning on mõeldud kasutamiseks

Rohkem

6 tsooniga keskus WFHC MASTER RF 868MHz & 4 või 6 tsooniga alaseade SLAVE RF KASUTUSJUHEND 6 tsooniga WFHC RF keskus & 4 või 6 tsooniga alaseade SLAVE

6 tsooniga keskus WFHC MASTER RF 868MHz & 4 või 6 tsooniga alaseade SLAVE RF KASUTUSJUHEND 6 tsooniga WFHC RF keskus & 4 või 6 tsooniga alaseade SLAVE 6 tsooniga keskus WFHC MASTER RF 868MHz & 4 või 6 tsooniga alaseade SLAVE RF KASUTUSJUHEND 6 tsooniga WFHC RF keskus & 4 või 6 tsooniga alaseade SLAVE RF 868MHz 3-6 EE 1. KASUTUSJUHEND 6 tsooniga WFHC

Rohkem

ISS0050 Mõõtmine

ISS0050 Mõõtmine MHK0120 SISSEJUHATUS MEHHATROONIKASSE Sügis 2018 Tagasiside Martin Jaanus U02-308 (hetkel veel) martin.jaanus@ttu.ee 620 2110, 56 91 31 93 Õppetöö : http://isc.ttu.ee Õppematerjalid : http://isc.ttu.ee/martin

Rohkem

29 th International Physics Olympiad Reykjavik, Iceland Eksperimentaalne võistlus Esmaspäev, 6. juuli 1998 Kasutada olev aeg: 5 tundi Loe esmalt seda:

29 th International Physics Olympiad Reykjavik, Iceland Eksperimentaalne võistlus Esmaspäev, 6. juuli 1998 Kasutada olev aeg: 5 tundi Loe esmalt seda: 9 th International Physics Olympiad Reykjavik, Iceland Eksperimentaalne võistlus Esmaspäev, 6. juuli 1998 Kasutada olev aeg: 5 tundi Loe esmalt seda: 1. Kasuta ainult korraldajate antud sulepead.. Kasuta

Rohkem

Microsoft Word - F3A_Reeglistik_2010.doc

Microsoft Word - F3A_Reeglistik_2010.doc Mudeliklassi F3A Eesti meistrivõistluste reeglistik (2010) Reeglid põhinevad Rahvusvahelise Lennuspordi Föderatsiooni (FAI) määrustel, kuid on mugandatud arvestades kohalike võistlejate lennuvahendeid

Rohkem

Microsoft Word - A-mf-7_Pidev_vorr.doc

Microsoft Word - A-mf-7_Pidev_vorr.doc 7. PIDEVUE VÕRRAND, LIANDITE DIFUIOON 7.1. Põhivalemi tuletamine Pidevuse võrrand kirjeldab liikuva vedeliku- või gaasimassi jäävust ruumielementi sisseja väljavoolava massi erinevus väljendub ruumiühikus

Rohkem

KITSAS JA LAI MATEMAATIKA Matemaatikapädevus Matemaatikapädevus tähendab matemaatiliste mõistete ja seoste süsteemset tundmist, samuti suutlikkust kas

KITSAS JA LAI MATEMAATIKA Matemaatikapädevus Matemaatikapädevus tähendab matemaatiliste mõistete ja seoste süsteemset tundmist, samuti suutlikkust kas KITSAS JA LAI MATEMAATIKA Matemaatikapädevus Matemaatikapädevus tähendab matemaatiliste mõistete ja seoste süsteemset tundmist, samuti suutlikkust kasutada matemaatikat temale omase keele, sümbolite ja

Rohkem

Microsoft PowerPoint - loeng2.pptx

Microsoft PowerPoint - loeng2.pptx Kirjeldavad statistikud ja graafikud pidevatele tunnustele Krista Fischer Pidevad tunnused ja nende kirjeldamine Pidevaid (tihti ka diskreetseid) tunnuseid iseloomustatakse tavaliselt kirjeldavate statistikute

Rohkem

IFI6083_Algoritmid_ja_andmestruktuurid_IF_3

IFI6083_Algoritmid_ja_andmestruktuurid_IF_3 Kursuseprogramm IFI6083.DT Algoritmid ja andmestruktuurid Maht 4 EAP Kontakttundide maht: 54 Õppesemester: K Eksam Eesmärk: Aine lühikirjeldus: (sh iseseisva töö sisu kirjeldus vastavuses iseseisva töö

Rohkem

6

6 TALLINNA ÕISMÄE GÜMNAASIUMI ÕPPESUUNDADE KIRJELDUSED JA NENDE TUNNIJAOTUSPLAAN GÜMNAASIUMIS Õppesuundade kirjeldused Kool on valikkursustest kujundanud õppesuunad, võimaldades õppe kahes õppesuunas. Gümnaasiumi

Rohkem

Microsoft Word - Suure thermori pass2.doc

Microsoft Word - Suure thermori pass2.doc PAIGALDAMINE KASUTAMINE HOOLDUS SUUREMAHULISED 500-3000 L VEEBOILERID Need on sukel-ja keraamilise küttekehaga elektrilised veesoojendid. Võimalikud on variandid kus täiendavalt küttekehale on ka kesküttesüsteemiga

Rohkem

untitled

untitled et Raketise eksperdid. Kaarraketis Framax Xlife Raamraketis Framax Xlife Informatsioon kasutajale Instruktsioon paigaldamiseks ja kasutamiseks 9727-0-01 Sissejuhatus tus Sissejuha- by Doka Industrie GmbH,

Rohkem

Diskreetne matemaatika I praktikumiülesannete kogu a. kevadsemester

Diskreetne matemaatika I praktikumiülesannete kogu a. kevadsemester Diskreetne matemaatika I praktikumiülesannete kogu 2019. a. kevadsemester Sisukord 1 Tingimuste ja olukordade analüüsimine 3 2 Tõesuspuu meetod 5 3 Valemite teisendamine 7 4 Normaalkujud 7 5 Predikaadid

Rohkem

6

6 TALLINNA ÕISMÄE GÜMNAASIUMI ÕPPESUUNDADE KIRJELDUSED JA NENDE TUNNIJAOTUSPLAAN GÜMNAASIUMIS Õppesuundade kirjeldused Kool on valikkursustest kujundanud õppesuunad, võimaldades õppe kolmes õppesuunas. Gümnaasiumi

Rohkem

EDL Liiga reeglid 1. ÜLDSÄTTED 1.1. EDL Liiga toimub individuaalse arvestuse alusel, kus mängijad on jagatud hooaja EDL Liiga tulemuste põhj

EDL Liiga reeglid 1. ÜLDSÄTTED 1.1. EDL Liiga toimub individuaalse arvestuse alusel, kus mängijad on jagatud hooaja EDL Liiga tulemuste põhj EDL Liiga reeglid 1. ÜLDSÄTTED 1.1. EDL Liiga toimub individuaalse arvestuse alusel, kus mängijad on jagatud hooaja 2017-2018 EDL Liiga tulemuste põhjal nelja liigasse. a. Premium Liiga (9 osalejat) b.

Rohkem

Word Pro - digiTUNDkaug.lwp

Word Pro - digiTUNDkaug.lwp ARVUSÜSTEEMID Kõik olulised arvusüsteemid on positsioonilised ehk arvu numbrid asuvad neile ettenähtud kindlatel asukohtadel arvujärkudes a i : a a a a a a a - a - a - a - a i Ainus üldtuntud mittepositsiooniline

Rohkem

Õppematerjalide esitamine Moodle is (alustajatele) seminar sarjas Lõunatund e-õppega 12. septembril 2017 õppedisainerid Ly Sõõrd (LT valdkond) ja Dian

Õppematerjalide esitamine Moodle is (alustajatele) seminar sarjas Lõunatund e-õppega 12. septembril 2017 õppedisainerid Ly Sõõrd (LT valdkond) ja Dian Õppematerjalide esitamine Moodle is (alustajatele) seminar sarjas Lõunatund e-õppega 12. septembril 2017 õppedisainerid Ly Sõõrd (LT valdkond) ja Diana Lõvi (SV valdkond) Järgmised e-lõunad: 10. oktoober

Rohkem

PALMIKRÜHMAD Peeter Puusempa ettekanded algebra ja geomeetria õppetooli seminaril 11., 18. ja 25. jaanuaril a. 1. Palmikud ja palmikrühmad Ajalo

PALMIKRÜHMAD Peeter Puusempa ettekanded algebra ja geomeetria õppetooli seminaril 11., 18. ja 25. jaanuaril a. 1. Palmikud ja palmikrühmad Ajalo PALMIKRÜHMAD Peeter Puusempa ettekanded algebra ja geomeetria õppetooli seminaril 11., 18. ja 25. jaanuaril 2009. a. 1. Palmikud ja palmikrühmad Ajaloolisi märkmeid 1891 ilmus Adolf Hurwitzi 1 artikkel

Rohkem

AASTAARUANNE

AASTAARUANNE 2014. 2018. aasta statistikatööde loetelu kinnitamisel juunis 2014 andis Vabariigi Valitsus Statistikaametile ja Rahandusle korralduse (valitsuse istungi protokolliline otsus) vaadata koostöös dega üle

Rohkem

KAITSELIIDU AASTA MEISTRIVÕISTLUSED SÕJALISES KOLMEVÕISTLUSES Eesmärk: JUHEND populariseerida sõjalis-sportlikku tegevust kaitseliitlastee hulga

KAITSELIIDU AASTA MEISTRIVÕISTLUSED SÕJALISES KOLMEVÕISTLUSES Eesmärk: JUHEND populariseerida sõjalis-sportlikku tegevust kaitseliitlastee hulga KAITSELIIDU 2019. AASTA MEISTRIVÕISTLUSED SÕJALISES KOLMEVÕISTLUSES Eesmärk: JUHEND populariseerida sõjalis-sportlikku tegevust kaitseliitlastee hulgas. selgitada välja Kaitseliidu 2019. aasta meistrid

Rohkem

Tuustep

Tuustep TUUSTEPP Eesti tants segarühmale Tantsu on loonud Roland Landing 2011. a. Pärnus, kirjeldanud Erika Põlendik. Rahvalik muusika, esitab Väikeste Lõõtspillide Ühing (CD Kui on kuraasi ). Tantsus on käed

Rohkem

1 Keskkonnamõju analüüs Loone - Pirgu metsakuivenduse rekonstrueerimine Koostajad Koostamise aeg metsaparandusspetsialist Jüri Koort Raplam

1 Keskkonnamõju analüüs Loone - Pirgu metsakuivenduse rekonstrueerimine Koostajad Koostamise aeg metsaparandusspetsialist Jüri Koort Raplam 1 Keskkonnamõju analüüs Loone - Pirgu metsakuivenduse rekonstrueerimine Koostajad Koostamise aeg metsaparandusspetsialist Jüri Koort 214-2-27 Raplamaa bioloogilise mitmekesisuse spetsialist Toomas Hirse

Rohkem

Slide 1

Slide 1 Elektrituru avanemine 2013 Priit Värk Koduomanike Liit Ajalugu Euroopa Liidu elektriturg avanes täielikult 2007 juuli Ühtse siseturu põhimõte kaupade vaba liikumine; Turu avanemine tuleneb liitumislepingust

Rohkem

Pärnu Maavalitsus Akadeemia 2, Pärnu Tel Viljandi Maavalitsus Vabaduse plats 2, Viljandi Tel www

Pärnu Maavalitsus Akadeemia 2, Pärnu Tel Viljandi Maavalitsus Vabaduse plats 2, Viljandi Tel www Pärnu Maavalitsus Akadeemia 2, 80088 Pärnu Tel 4479733 www.parnu.maavalitsus.ee Viljandi Maavalitsus Vabaduse plats 2, 71020 Viljandi Tel 4330 400 www.viljandi.maavalitsus.ee Konsultant Ramboll Eesti AS

Rohkem

Tarvikud _ Puhurid ja vaakumpumbad INW külgkanaliga Air and Vacuum Components in-eco.co.ee

Tarvikud _ Puhurid ja vaakumpumbad INW külgkanaliga Air and Vacuum Components in-eco.co.ee Tarvikud _ Puhurid ja vaakumpumbad INW külgkanaliga Air and Vacuum Components in-eco.co.ee IN-ECO, spol. s r.o. Radlinského 13 T +421 44 4304662 F +421 44 4304663 E info@in-eco.sk Õhufiltrid integreeritud

Rohkem

Microsoft Word - Järvamaa_KOVid_rahvastiku analüüs.doc

Microsoft Word - Järvamaa_KOVid_rahvastiku analüüs.doc Töömaterjal. Rivo Noorkõiv. Käesolev töö on koostatud Siseministeeriumi poolt osutatava kohalikeomavalitsuste ühinemist toetava konsultatsioonitöö raames. Järvamaa omavalitsuste rahvastiku arengu üldtrendid

Rohkem

(Microsoft Word - ÜP küsimustiku kokkuvõte kevad 2019)

(Microsoft Word - ÜP küsimustiku kokkuvõte kevad 2019) Ümbrikupalkade küsimustiku kokkuvõte Ülevaade on koostatud alates 2017. aasta kevadest korraldatud küsitluste põhjal, võimalusel on võrdlusesse lisatud ka 2016. aasta küsitluse tulemused, kui vastava aasta

Rohkem

Failiotsing: find paljude võimalustega otsingukäsk find kataloog tingimused kataloog - otsitakse sellest kataloogist ja tema alamkataloogidest tingimu

Failiotsing: find paljude võimalustega otsingukäsk find kataloog tingimused kataloog - otsitakse sellest kataloogist ja tema alamkataloogidest tingimu Failiotsing: find paljude võimalustega otsingukäsk find kataloog tingimused kataloog - otsitakse sellest kataloogist ja tema alamkataloogidest tingimused: faili nimi faili vanus faili tüüp... 1 Failiotsing:

Rohkem

Mida räägivad logid programmeerimisülesande lahendamise kohta? Heidi Meier

Mida räägivad logid programmeerimisülesande lahendamise kohta? Heidi Meier Mida räägivad logid programmeerimisülesande lahendamise kohta? Heidi Meier 09.02.2019 Miks on ülesannete lahendamise käigu kohta info kogumine oluline? Üha rohkem erinevas eas inimesi õpib programmeerimist.

Rohkem

PAIGALDUSJUHEND DUŠINURK VESTA 1. Enne paigaldustööde alustamist veenduge, et elektrikaablid, veetorud vms ei jääks kruviaukude alla! 2. Puhastage sei

PAIGALDUSJUHEND DUŠINURK VESTA 1. Enne paigaldustööde alustamist veenduge, et elektrikaablid, veetorud vms ei jääks kruviaukude alla! 2. Puhastage sei PAIGALDUSJUHEND DUŠINURK VESTA 1. Enne paigaldustööde alustamist veenduge, et elektrikaablid, veetorud vms ei jääks kruviaukude alla! 2. Puhastage seinad ja põrand enne dušinurga paigaldamist! 3. Kasutage

Rohkem